
Implicitization of curves and surfaces using predicted support

Ioannis Z. Emiris
Tatjana Kalinka
Christos Konaxis

May 14, 2011

1 Abstract

We reduce implicitization of rational parametric curves and (hyper)surfaces to linear algebra, by interpolating
the coefficients of the implicit equation. For this, we may use any method for predicting the implicit support.
We focus on methods that exploit input structure in the sense of sparse (or toric) elimination theory, namely by
computing the Newton polytope of the implicit polynomial. We offer a public-domain implementation of our
methods, and study their numerical stability and efficiency on several classes of plane curves and surfaces, and
discuss how it can be used for approximate implicitization in the setting of sparse elimination.

2 Introduction

Implicitization is the problem of changing the representation of parametric objects to implicit (or Cartesian)
form. This problem lies at the heart of several questions in computer-aided geometric design (CAGD) and
geometric modeling, including intersection problems and membership queries. In several situations, it is impor-
tant to have both representations available. Implicit representations encompass a larger class of shapes than
parametric ones. Moreover, the class of implicit curves and surfaces is closed under certain operations such as
offsetting, while its parametric counterpart is not. Implicitization is also of independent interest, since certain
questions in areas as diverse as robotics or statistics, e.g. [4], reduce to deriving the implicit form.

Here we follow a classical symbolic-numeric method, which reduces implicitization to interpolating the coef-
ficients of the defining equation. We implement interpolation by (numeric) linear algebra operations, following
a symbolic phase of implicit support prediction, i.e. computing a (super)set of the monomials appearing in the
implicit equation. Standard methods to interpolate the unknown coefficients by linear algebra, are divided in
two main categories, dense and sparse methods. The former require a bound on the total degree of the target
polynomial, whereas the latter require only a bound on the number of its terms, thus exploiting any sparseness
of the target polynomial. Moreover, its performance depends on the actual number of non-zero terms in this
polynomial. In fact, a priori knowledge of the support essentially answers the first task of such a method. For
more information see [25].

Our first contribution is to exploit sparse (or toric) variable elimination theory to predict the implicit Newton
polytope, i.e. the convex hull of the implicit support.

Definition 1. Given a polynomial
∑
j cijt

aij , its support is the set Ai = {aij ∈ Nn : cij 6= 0}; its Newton
polytope is the convex hull of the support.

(2,3)

(1,0)

(0,2)

N(f0)

f0 = x2y3 + 3x− 5y2 f1 = x3 − x2 + y2x− 3y

(1,2)

(3,0)(2,0)

(0,1)

N(f1)

Figure 1: Example of Newton polygons

One reason for revisiting interpolation is the current increase of activity around various approaches capable of
predicting the implicit support, e.g. [5, 6, 21, 22]. Although our team has been focussing on sparse elimination [9,
11, 12], the present work can use the implicit support predicted by any method.

1

In fact, [22, sec.4] states that “Knowing the Newton polytopes reduces computing the [implicit] equation to
numerical linear algebra. The numerical mathematics of this problem is interesting and challenging [...] ” We
expect that our software will interface implicit support predictors, such as those developed in [5, 9, 11, 22],
with linear algebra. We juxtapose the use of exact and numerical linear algebra, which eventually can rely on
state-of-the-art libraries, such as Eigen or LAPACK, respectively.

We discuss approximate implicitization, which is of high practical importance in CAGD [8, 19], in the
setting of sparse elimination. In our view, approximate implicitization is one of the main motivations for
reducing implicitization to interpolation.

Our second contribution is to offer a public-domain Maple implementation. We study the numerical stability
and efficiency of our algorithms on several classes of 2- and 3-d examples. The Maple code has been published
on our Wiki webpage that contains support prediction and implicitization related experiments:

http://ergawiki.di.uoa.gr/index.php/Implicitization

One central question is how to evaluate the computed monomials to obtain a suitable matrix, when performing
exact or numerical matrix operations. We compare results obtained by using random integers, random complex
unitary numbers and complex roots of unity.

A parametrization of a geometric object of co-dimension one, in a space of dimension n+1, can be described
by a set of parametric functions:

x0 = f0(t1, . . . , tn), . . . , xn = fn(t1, . . . , tn),

where t := (t1, t2, . . . , tn) is the vector of parameters and f := (f0, . . . , fn) is a vector of continuous functions,
including polynomial, rational, and trigonometric functions, also called coordinate functions. These are defined
on some product of intervals Ω := Ω1 × · · · × Ωn, Ωi ⊆ Rn, of values of t1, . . . , tn. Implicitization of planar
curves and surfaces in 3-dimensional space corresponds to n = 1 and n = 2 respectively.

The implicitization problem asks for the smallest algebraic variety containing the closure of the image of
the parametric map f : Rn → Rn+1 : t 7→ f(t). This image is contained in the variety defined by the ideal of
all polynomials p s.t. p(f0(t), . . . , fn(t)) = 0, for all t in Ω. We restrict ourselves to the case when this is a
principal ideal, and we wish to compute its defining polynomial

p(x0, . . . , xn) = 0, (1)

given its Newton polytope or a polytope that contains it. We can regard the variety in question as the projection
of the graph of map f to the last n+ 1 coordinates. If f is polynomial, implicitization is reduced to eliminating
t from the polynomial system

Fi := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,

seen as polynomials in t with coefficients which are functions of the xi. This is also the case for rational
parameterizations

xi =
fi(t)
gi(t)

, i = 0, . . . , n, (2)

which can be represented as polynomials

Fi := xigi(t)− fi(t) ∈ (R[xi])[t], i = 0, . . . , n, (3)

where we have to take into account that the gi(t) cannot vanish.
Several algorithms exist for this problem, including methods based on resultants, Gröbner bases, moving

surfaces, and residues. Our approach relies on any support prediction method, see sect. 4. We focus on sparse
(or toric) elimination: In the case of curves, the implicit support is directly determined for generic parametric
expressions with the same supports. In the case of (hyper)surfaces, the implicit support is provided by that of
a sparse resultant.

The rest of the paper is structured as follows. Previous work is discussed in the next two sections. Sect. 3
discusses existing methods for interpolating the implicit polynomial by linear algebra. Sect. 4 discusses implicit
support prediction and sparse elimination. Our algorithm is detailed in sect. 5, and its use in experiments
is analyzed in sect. 6. We conclude with open questions in sect. 7, whereas the Appendix contains further
experimental results.

3 Existing interpolation methods

This section examines how implicitization had been reduced to a linear algebra question. Let S be (a superset
of) the support of the implicit polynomial p(x0, . . . , xn) = 0 with unknown coefficients P , |P | = |S|. We
sometimes refer to S as implicit support, with the understanding that, later, interpolation may set some of the
corresponding coefficients to zero.

2

3.1 Exact implicitization

The most direct method to reduce implicitization to linear algebra is to construct a |S|× |S| matrix M , indexed
by S (columns) and |S| different values (rows) at which all monomials get evaluated. Then, P is in the kernel
of M . This idea was used in [12, 17, 22].

In [21], they propose evaluation at unitary τ ∈ (C∗)n, i.e., of modulus 1. This is one of the evaluation strate-
gies examined below. Another approach was described in [2], based on integration of matrix M = SST , over
each parameter t1, . . . , tn. Then, P is in the kernel of M . In fact, the authors propose to consider successively
larger supports in order to capture sparseness. This method covers a wide class of parameterizations, including
polynomial, rational, and trigonometric representations. The resulting matrix has Henkel-like structure [16].
When it is computed over floating-point numbers, the resulting implicit polynomial does not necessarily have
integer coefficients. This is the situation we face when using numerical methods, such as SVD, see subsec. 5.2.
In [2], they discuss some extra processing to yield the integer relations among the coefficients; we also use a
similar method.

3.2 Approximate implicitization

In practical applications of CAGD, precise implicitization often can be impossible or very expensive to obtain.
Approximate implicitization over floating-point numbers appears to be an effective solution. There are direct
[8, 24] and iterative techniques [1].

We describe the basic direct method [8]. Given a parametric (spline) curve or surface x(t), t ∈ Ω ⊂ Rn, the
goal of [8] is to find polynomial q(x) such that

q(x(t) + η(t)g(t)) = 0,

where g(t) is a continuous direction function with Euclidean norm ‖g(t)‖ = 1 and η(t) a continuous error
function with |η(t)| ≤ ε. Now,

q(x(t)) = (Mp)Tα(t),

where matrix M is built from monomials in x. It may be constructed as in our case, or it may contain a subset
of the monomials comprising the exact implicit support. Here, p is the vector of implicit coefficients, hence
Mp = 0 returns the exact solution. Otherwise, α(t) is the basis of the space of polynomials that describes
q(x(t)), and is assumed to form a partition of unity:

∑
αi = 1, and to be nonnegative over Ω:

αi ≥ 0, ∀i,∀t ∈ Ω.

One may use the Bernstein-Bézier basis with respect to the interval Ω, in the case of curves, or a triangle which
contains Ω, in the case of surfaces.

In [8, p.176] the authors propose to translate to the origin and scale the parametric object, so as to lie in
[−1, 1]n, in order to improve the numerical stability of the linear algebra operations. In our experiments, we
found out that using unitary numbers leads to better numerical stability. Since both our and their methods
rely on SVD, our experiments confirm their idea.

The idea of the above methods is to interpolate the coefficients using successively larger supports, starting
with a quite small support and extending it so as to reach the exact one. Existing approaches have used upper
bounds on the total implicit degree, thus ignoring any sparseness structure.

In the context of sparse elimination, the Newton polytope captures the notion of degree. Given an implicit
polytope we can naturally define candidates of smaller support, the equivalent of lower degree in classical
elimination, by an inner integral offset of the implicit polytope:

Offset can be repeated, thus producing a list of implicit supports yielding implicit equations whose approx-
imation error should be proportional to the number of peeling steps. Clearly, the computed implicit equation
is of lower degree than the actual one. It is an open question to bound the difference of the corresponding zero
sets.

4 Support prediction

Most existing approaches employ total degree bounds on the implicit polynomial to compute a superset of
the implicit support, e.g. [2]. This fails to take advantage of the sparseness of the input in order to accelerate
computation, and to exploit sparseness in the implicit polynomial in the sense of Prop. 2. For this, computing the
Newton polytope of a rational hypersurface was posed in [23] for generic Laurent polynomial parameterizations,
in the framework of sparse elimination theory.

Algorithms based on tropical geometry have been offered in [7, 21, 22]. This method computes the abstract
tropical variety of a hypersurface parameterized by generic Laurent polynomials in any number of variables,

3

thus yielding its implicit support; it is implemented in TrIm. For non-generic parameterizations of rational
curves, the implicit polygon is predicted. In higher dimensions, the following holds:

Proposition 1. [21, prop.5.3] Let f0, . . . , fn ∈ C[t±1
1 , . . . , t±1

n] be any Laurent polynomials whose ideal of
algebraic relations is principal, say I = 〈g〉, and Pi ⊂ Rn the Newton polytope of fi. Then, the polytope which
is constructed combinatorially from P0, . . . , Pn as in [21, sec.5.1] contains a translate of the Newton polytope of
g.

The tropical approach was improved in [5, sec.5.4] to yield the precise implicit polytope in R3 for non-generic
parameterizations of surfaces in 3-space.

In [6], they determine the Newton polygon of a curve parameterized by rational functions, without any
genericity assumption. In a similar direction, an important connection with combinatorics was described in
[13], as they showed that the Newton polytope of the projection of a generic complete intersection is isomorphic
to the mixed fiber polytope of the Newton polytopes associated to the input data.

In [12] a method relying on sparse elimination for computing a superset of the generic support from the
resultant polytope is discussed, itself obtained as a (non orthogonal) projection of the secondary polytope. The
latter was computed by calling Topcom [18]. This approach was quite expensive and, hence, applicable only to
small examples; it is refined and improved in this paper.

In [11], sparse elimination is applied to determine the vertex representation of the implicit Newton polygon
of planar curves. The method uses mixed subdivisions of the input Newton polygons and regular triangulations
of pointsets defined by the Cayley trick. It can be applied to polynomial and rational parameterizations, where
the latter may have the same or different denominators. The method offers a set of rules that, applied to the
supports of sufficiently generic rational parametric curves, specify the 4, 5, or 6 vertices of the implicit polygon.
In case of non-generic inputs, this polygon is guaranteed to contain the Newton polygon of the implicit equation.
The method can be seen as a special case of the following general approach based on sparse elimination.

4.1 Sparse elimination

Sparse elimination subsumes classical (or dense) elimination in the sense that, when Newton polytopes equal
the corresponding simplices, the former bounds become those of the classical theory.

Proposition 2. [12, sec.3] Consider polynomial system F0, . . . , Fn ∈ K[t] as in (3), defining a hypersurface,
and let Ai be the support of Fi. Then, the total degree of the implicit polynomial is bounded by n! times the
volume of the convex hull of A0 ∪ · · · ∪ An. The degree of the implicit polynomial in some xj , j ∈ {0, . . . , n} is
bounded by the mixed volume of the Fi, i 6= j, seen as polynomials in t; cf also [23, thm.2(2)].

The classical results for the dense case follow as corollaries. Take a surface parameterized by polynomials
of degree d, then the implicit polynomial is of degree d2. For tensor parameterizations of bi-degree (d1, d2), the
implicit degree is 2d1d2.

Let {F0, F1, . . . , Fn} be a polynomial system where Fi ∈ K[t1, . . . , tn], with symbolic coefficients cij . Its
resultant R is a polynomial in Z[cij], vanishing iff F0 = F1 = · · · = Fn = 0 has a common root in a specific
variety. This is the projective variety over the algebraic closure K of K, in the case of projective resultants, or
the toric variety X defined by the supports of the Fi’s in the case of sparse (or toric) resultants, s.t. it contains
the topological torus as a dense subset: (K

∗
)n ⊂ X. The Newton polytope N(R) of the resultant polynomial

is the resultant polytope. We call any monomial which corresponds to a vertex of N(R) an extreme term of R.
The Minkowski sum A+B of convex polytopes A,B ⊂ Rn is the set A+B = {a+ b | a ∈ A, b ∈ B} ⊂ Rn.

Given n + 1 convex polytopes Pi of dimension n, a fine or tight mixed subdivision of P =
∑n
i=0 Pi, is a

collection of n-dimensional convex polytopes σ, called (Minkowski) cells, s.t.: (1) They form a polyhedral
complex that partitions P , and (2) Every cell σ is a Minkowski sum of subsets σi ⊂ Pi: σ = σ0 + · · · + σn,
where dim(σ) = dim(σ0) + · · ·+ dim(σn) = n.

A cell σ is called i-mixed, or vi-mixed, if it is the Minkowski sum of n 1-dimensional segments Ej ⊂ Pj and
one vertex vi ∈ Pi : σ = E0 + · · ·+ vi + · · ·+ En. A mixed subdivision is called regular if it is obtained as the
projection of the lower hull of the Minkowski sum of lifted polytopes P̂i := {(pi, ω(pi)) | pi ∈ Pi}. If the lifting
function ω is sufficiently generic, then the induced mixed subdivision is tight. We recall a surjection from the
regular fine mixed subdivisions to the vertices of the resultant polytope:

Theorem 3. [20] Given a polynomial system and a regular fine mixed subdivision of the Minkowski sum of the
Newton polytopes of the supports of the polynomials in the system, an extreme term of the resultant R equals

c ·
n∏
i=0

∏
σ

c
vol(σ)
iσi

where σ = σ0 + σ1 + · · ·+ σn ranges over all σi-mixed cells, and c ∈ {−1,+1}.

4

Computing all regular fine mixed subdivisions reduces, due to the so-called Cayley trick, to computing all
regular triangulations of a point set of cardinality |A0|+· · ·+|An| in dimension 2n. This is the Cayley embedding
of the Ai’s. The set of all regular triangulations corresponds to the vertices of the secondary polytope. We
enumerate all regular triangulations of the Cayley embedding: it is equivalent to enumerating all regular fine
mixed subdivisions of A0 + · · ·+An. Each such subdivision yields a vertex of N(R).

Secondary
polytope

Resultant
polytope

Input
support

Cayley
Trick

Enumerate
all regular

triangulations

Sturmfels’
Theorem

Figure 2: Computing the resultant polytope of 3 Newton polygons.

We use sparse elimination to implicitize (hyper)surfaces, based on the implementation of [9]. This is an
ongoing project that aims at optimizing the computation of N(R) without enumerating all mixed subdivisions.
Still, we sketch the theoretical procedure.

Let Ai ⊂ Zn, i = 0, . . . , n, be the supports of the polynomials in (3), of cardinality mi, and Pi, i = 0, . . . , n
the corresponding Newton polytopes. For each Ai, we introduce symbolic coefficients cij , j = 1, . . . ,mi, and
define the polynomial Fi in the cij ’s with the same support. Each cij corresponds to a (possibly constant) linear
polynomial in xi, with coefficients from fi. The sparse resultant R = RA0,...,An(F0, . . . , Fn) of the Fi’s with
respect to t is well-defined, and is an irreducible integer polynomial in the cij ’s. Consider an epimorphism of
rings

φ : K → C[xi] : cij 7→ linear polynomial in xi, (4)

yielding a specialization of the coefficients cij to the actual coefficients of (2). The specialized sparse resultant
R′ := φ(R) is a polynomial in xi, which coincides with the implicit equation, provided that R′ does not vanish,
a certain genericity condition is satisfied, and the parametrization is generically 1-1 [23, thm.2]. The following
diagram illustrates these concepts:

{xi = gi(t)
hi(t)
} {xihi(t)− gi(t)} {Fi} RA0,...,An(F0, . . . , Fn)

p(x0, . . . , xn)

φ−1

φ

If the latter condition fails, then R′ is a power of the implicit equation [3], [23, thm.3]. When the genericity
condition fails for a specialization of the cij ’s, the support of the specialized resultant is a superset of the support
of actual implicit polynomial modulo a translation, provided the sparse resultant does not vanish. This follows
from the fact that the method computes the same implicit polytope as the tropical approach, whereas the latter
is characterized in prop. 1. In particular, the resultant polytope is a Minkowski summand of the fiber polytope
Σπ(∆, P), where polytope ∆ is a product of simplices, each corresponding to a support Ai, P =

∑n
i=0 Pi, and

π is a projection from ∆ onto P . Then, Σ(∆, P), is strongly isomorphic to the secondary polytope of the point
set obtained by the Cayley embedding of the Ai’s, [20, sec.5].

5 Implicitization algorithm

The steps of our implicitization algorithm are given below, and apply to any support prediction method.
Input: Polynomial or rational parametrization xi = fi(t1, . . . , tn).
Output: Implicit polynomial p(xi) in the monomial basis in Nn+1.
1. Support prediction determines (a superset of) the implicit polytope vertices.
2. Compute all lattice points S ⊆ Nn+1 in the polytope.
3. Repeat |S| times: Select value τ for t, evaluate xi(t), i = 0, . . . , n, thus evaluating each monomial in S.
4. Given |S| × |S| matrix M , solve M~p = 0 for p; return the primitive part of polynomial ~p>S.

5.1 Building the matrix

We focus on two support prediction methods. The first applies only to curves and is described in [sect. 4], [11].
The second is general and computes the support of the resultant of system (3).

5

Implicit equation

Implicit equation support

Compute extremal terms of the
Resultant Polytope

Find coefficients by solving linear system

Compute inner points of the
Resultant Polytope

Support

Coefficients
(with respect to
t)

Parametric polynomial expressions

xi − fi(t) ∈ K[t], i ∈ [0, n]

Figure 3: Implicitization with support prediction

In the case of parametric curves, given the predicted polygon, we compute the m lattice points ai that it
contains. Each ai = (ai0, ai1) is an exponent of a (potential) monomial of the implicit polynomial. In order to
obtain the coefficients we evaluate xi(t), i = 0, 1, at some τk, k = 1, . . . ,m, and construct an m ×m matrix
M with rows indexed by τ1, . . . , τm and columns by a1, . . . , am. Let x(τk)ai denote the evaluated ith monomial
x0(τk)ai0x1(τk)ai1 at τk. Then

M =


x(τ1)a1 · · · x(τ1)am

... · · · ...
x(τm)a1 · · · x(τm)am


τ1
...
τm

(5)

To apply the general support prediction [9], consider the polynomials Fi, i = 0, . . . , n in Equation (3), with
symbolic coefficients cij :

Fi =
di∑
j=1

cijt
aij ,

where di is the number of monomials in t with non-zero coefficient, i.e. the cardinality of support Ai. Given
supports Ai, the output is the set V of vertices of the Newton polytope of the resultant of the Fi’s. Each
resultant vertex ai = (ai1, . . . , aid) ∈ V is a d-dimensional vector, where d =

∑n
i=0 di, and corresponds to an

extreme resultant monomial cai , where c is the d-dimensional vector of the symbolic coefficients of all Fi’s:

c :=(c1, . . . , cd) =
(c01, . . . , c0d0 ,︸ ︷︷ ︸

from F0

c11, . . . , cid1 ,︸ ︷︷ ︸
from F1

. , cn1, . . . , cndn
)︸ ︷︷ ︸

from Fn

.

Given the resultant polytope vertices, we compute the set S of all m lattice points in the resultant polytope.
We apply specialization φ to the set of monomials in cij ’s with exponents in S to obtain a set of polynomials
(products of linear polynomials) in xi’s. We abuse notation and denote this set also by φ(S), i.e. we identify
each φ(c)ak with its exponent ak.

When we substitute the symbolic coefficients cij by the actual univariate polynomials in xi, some of the
vertices of the implicit polytope may map to identical expressions: ∃ak 6= al ∈ V s.t. φ(c)ak = φ(c)al . By
examination of the φ(c)ak , we remove duplicates. In the following we assume that φ(S) has no multiple entries.

Matrix M is constructed similarly as before. Let φ(S) = {a1, . . . , am} ⊂ Nd be the lattice points, which
form a superset of the resultant support. Each column contains a product φ(c)ak = φ(cak1

1 · · · cakd

d) evaluated at
various τk, for k = 1, . . . ,m. Thus, we define the following m×m matrix, with columns indexed by the ak’s:

(a11, . . . , a1d) . . . (am1, . . . , amd)

M =

2664
φ(ca11

1 · · · ca1d
d)(τ1) · · · φ(cam1

1 · · · camd
d)(τ1)

... · · ·
...

φ(ca11
1 · · · ca1d

d)(τm) · · · φ(cam1
1 · · · camd

d)(τm)

3775
τ1
...

τm

(6)

Each φ(c)ak ∈ φ(S) is a product of linear polynomials in xi.
It appears to be usual case, that some φ(c)ak project into same polynomials in xi’s. This allows us to

noticeably decrease size of the matrix M by removing the duplicates and using only φ(c)ak that have unique
representations in xi. After expanding and simplifying φ(c)ak , we get a set of monomials in xi’s. Let m′ be
the number of integer points in the convex hull they define, thus yielding a superset of the implicit support.

6

We form an m′ ×m′ matrix M ′, whose kernel yields the implicit coefficients. The columns of M ′ are indexed
by monomials in the xi’s, hence in Zn, and the matrix entries are evaluated monomials in the xi’s, while the
entries of matrix M are evaluated polynomials in the xi’s.

Often, matrix M ′ is of larger size than matrix M , see tables 3, 5. This is not a paradox, since φ is not an
orthogonal projection of the cij ’s to a space of lower dimension. Applying φ to a monomial in the cij ’s of total
degree δ results to a product of linear polynomials in the xi’s, which are developed to yield all monomials of
total degree < δ. For example, consider the monomial c301c

4
12 and the mapping c01 7→ x+ 1, c12 7→ y. Then, we

obtain the monomials x3y4, x2y4, xy4, y4. If cancellations do not occur among the new monomials, the resulting
matrix is larger.

Moreover, this new support may not be the set of vertices of a convex polytope, hence we must perform a
convex hull computation and then compute the set of integer points it contains. However, both computations
take place in a space of low dimension (n � d), while computing the integer points inside the polytope in Rd
defined by the set of monomials in the cij ’s can be a hard task.

5.2 Maple Implementation

Assume that matrix M has corank 1, i.e. rank(M) = m− 1. Solving the linear system

M~p = ~0, (7)

yields the implicit coefficient pi for each φ(c)ak . The kernel is one-dimensional, hence some entry pi is set to 1.
We form the inner product of the vector of the monomials indexing the columns of M with ~p, and then take
the primitive part of the resulting polynomial to define the implicit equation.

When M is evaluated at random integer values or unitary complex numbers, we tried Maple function
LinearSolve, from package LinearAlgebra, and Linear from package SolveTools. Equivalently, we can
compute the null-space null(M) of M using the command NullSpace() of the LinearAlgebra package. All
of these functions return the same output in roughly the same runtime with command LinearSolve being
slightly faster in larger examples. Exact Maple methods can treat indefinites usually encountered in parametric
expressions (a, b, c in tables 2,4). For larger examples, we trade exactness for speed and apply Singular Value
Decomposition (SVD) with command SingularValues(), thus computing

M~p> = (UΣV >)~p> = ~0> ⇔ Σ~v> = ~0>, V ~v> = ~p>. (8)

A basis of null(M) consists of the last columns of V corresponding to the zero singular values of M , because V
is orthogonal. When corank(M) = 1, the last row of V > corresponds to ~p. The same derivation holds if M is
rectangular, say µ×m,µ ≥ m. Then Σ is of the same dimensions, U is µ× µ, and V is m×m, where its last
column is the sought vector.

A central part in our linear system construction is held by the evaluation of matrix M at convenient τ .
Implementing our methods in Maple, we have tried integer and complex values. In the former case, we used
random and mutually prime integers to achieve exactness. The chosen value is discarded if it makes some
denominator vanish among the parametric expressions. We also tried complex values for τ : Given an m ×m
matrix, we used 2m-th roots of unity, and random unitary complexes, i.e. with modulus equal to 1.

Table 1 shows representative timings about these options that we examined. In particular, SVD is about 10
times faster than exact linear algebra on significant inputs, as expected; see the last two columns of the table.
We plan to use LinBox or Eigen as a faster alternative for our exact algorithm. In what concerns the various
evaluation points, our experiments show that runtimes do not vary significantly in small examples but in larger
ones the random integers and roots of unity evaluated as floats seem to give faster timings.

However, unitary complexes seem to offer the most stable results, from the numerical viewpoint. Random
integers give matrices which are closer to having numerical corank 1, although this property is not reproducible
in every experiment. The numerical stability of the result is measured by comparing ratios of singular values of
matrix M ; we employ the condition number κ(M) = σ1/σm, and σ1/σm−1, where σ1 is the maximum singular
value. By comparing these two numbers, we decide whether the matrix is of (numerical) corank 1, otherwise we
repeat the computation. Another approach is to consider the row of V > corresponding to the singular value σi
of M that satisfies σ1/σi � σ1/σi−1, but experiments indicate that this does not improve neither the numerical
stability or the correctness of the result. We plan to use LAPACK for further examination of numerical stability,
while employing larger examples.

When using numerical methods the computed implicit equation is not a polynomial with integer coefficients.
In [2], some post processing is done to discover the integer relations among the coefficients. Then, the polynomial
is multiplied by an appropriate number to recover the implicit polynomial with integer coefficients. We utilize
a similar method by converting the computed kernel-vector in real or complex space to a rational vector. In
practice this is done by assigning a small value to the Digits environment variable of Maple, then setting
all coefficients smaller than a certain threshold, defined by the problem’s condition number, equal to zero.

7

Table 1: Runtimes on Maple (seconds)
SVD NullSpace

curve root of 1 unitary C rand.Z rand.Z
Cardioid 0.356 0.289 0.076 0.132
Conchoid 0.12 0.092 0.048 0.084
Nephroid 0.012 1.15 0.012 2.3
Talbot’s 0.132 0.084 0.108 1.562
Ranunculoid 83.749 - 121.084 8809.43

The result is not always correct, so its validity is checked by plugging in the implicit equation the parametric
expressions and testing if the result is identically zero. The overall process is computationally hard and it can
be avoided whenever an implicit equation with floating point coefficients is sufficient for a specific problem.

6 Experiments

First, we describe some of the examples in details. Instead of x0, x1, x2 we use x, y, z. In several cases, when
the input is a parametric family we denote by a, b, c ∈ R∗ the nonzero parameter. These are set equal to some
nonzero constant when using numerical methods. For trigonometric parameterizations, we use the standard
conversion to an algebraic form by

sin θ =
2 tan θ/2

1 + tan2 θ/2
, cos θ =

1− tan2 θ/2
1 + tan2 θ/2

.

6.1 Curves

Witch of Agnesi. x = at, y = a/(1 + t2).

y

x

The curve support prediction provides 3 implicit polygon’s vertices: (0, 0), (2, 1), (0, 1). Their convex hull
contains one lattice point. We construct a 4 × 4 matrix and by solving the corresponding system we find 3
nonzero coefficients; the implicit polynomial is −a3 + x2y + a2y.

General support prediction method: The polynomials are: c00 + c01t = 0, c10 + c11t
2 = 0, with coefficients

c00 = −x, c01 = a, c10 = a − y, c11 = −y, and supports {0, 1}, {0, 2}. The resultant polytope is the segment
[(0, 2, 1, 0)(2, 0, 0, 1)] which contains no internal points. These two vectors index the columns of M and corre-
spond to the monomials {c201c10, c200c11}, which are specialized to {a2(a− y), (−x)2(−y)}, that index the 2× 2
matrix M . We solve M~p = 0 to find ~p = [p0, p1], yielding the implicit polynomial

p0(a3 − a2y) + p1(−x2y),

hence a2y + x2y − a3.
Alternatively, we can use the set {a2(a−y), (−x)2(−y)} to obtain the implicit support in x, y: {(0, 0), (0, 1), (2, 1)}.

Its convex hull contains no internal points, hence M ′ is 3× 3.
Folium of Descartes.

x =
3at

1 + t3
, y =

3at2

1 + t3
.

The curve support prediction yields polygon vertices (0, 0), (0, 3), (1, 1), (3, 0), thus 10 lattice points totally.
Solving the 10× 10 matrix yields 3 nonzero coefficients, and implicit polynomial x3 + y3 − 3axy.

General support prediction: The parametrization is represented by the polynomials 3at − x − xt3, −yt3 −
y + 3at2 with supports {0, 1, 3}, {0, 2, 3}. Then, φ is defined as: c00 = −x, c01 = 3a, c02 = −x, c10 = −y, c11 =
3a, c12 = −y.

The method computes 6 vertices of the (symbolic) resultant polytope: (0, 0, 3, 3, 0, 0), (0, 2, 1, 1, 2, 0), (0, 3, 0, 1, 0, 2),
(2, 0, 1, 0, 3, 0), (2, 1, 0, 0, 1, 2), (3, 0, 0, 0, 0, 3), which contains 4 inside points.

The straightforward approach would be to form a 10×10 matrix M . In this case, ~p = [1, p1, p1,−1−p3−p5,
−p2 − p4, p1, p2, p3, p4, p5], where pi ∈ N∗. We can safely reduce matrix size by keeping only the distinct
monomials in x, y, namely a4x1y1, x1

3a3, a3y1
3, x1

2a2y1
2, x1

3y1
3.

8

When substituting cij by the corresponding univariate polynomials we get 5 distinct monomials in x, y:
x3y3, x2y2, xy, y3, x3. The convex hull of the supports of these monomials is defined by the vertices: (3, 0),
(0, 3), (1, 1), (3, 3). We find 11 lattice points and build 11× 11 matrix. Solving linear system gives us 3 nonzero
coefficients, and we get implicit equation: x3 + y3 − 3axy = 0.

Nephroid. Rational representation:

x =
6(1− t2)(1 + t2)2 − 4(1− t2)3

(1 + t2)3
, y =

32t3

(1 + t2)3

The curve support prediction method returns vertices (0, 0), (6, 0), (0, 6). Their convex hull contains 28 lattice
points. Solving the linear system we find implicit polynomial 48x2 − 12y4 − 64− 24x2y2 + y6 − 12x4 + 3x2y4 +
x6 − 60y2 + 3x4y2.

Conhoid. Rational representation:

x = a+
1− t2
1 + t2

, y =
2at

1− t2 +
2t

1 + t2
.

The curve support prediction has to be applied with care, because of the special structure of the supports: one
has to use the more robust statement of [10]. For the general support prediction, we have: x − a − 1 + xt2 +
at2 − t2 = 0, y − 2at − 2t − 2at3 + 2t3 − yt4 = 0, with coefficients c00 = x − a − 1, c01 = x − a + 1, c10 = y,
c11 = −2a − 2, c12 = −2a + 2, c13 = −y, and supports: {0, 2}, {0, 1, 3, 4}. The predicted support has 6 lattice
points: (0, 4, 2, 0, 0, 0), (1, 3, 0, 2, 0, 0), (2, 2, 0, 1, 1, 0), (2, 2, 1, 0, 0, 1), (3, 1, 0, 0, 2, 0), (4, 0, 0, 0, 0, 2), yielding the
monomials c014c10

2, c00c013c11
2, c00

2c01
2c11c12, c002c01

2c10c13, c003c01c12
2, c004c13

2. Solving M~p = 0 gives
~p = [1, 1,−2, 2, 1, 1], and implicit polynomial 16x2a2 − 16x2 − 32x3a− 32y2xa+ 16y2x2 + 16y2a2 + 16x4.

6.2 Surfaces

Infinite cylinder. The rational parameterization yields the following polynomial system: 1 − xt2 − x − t2,
−y−yt2 +2t, −z+s, with supports {(0, 0), (2, 0); (0, 0), (1, 0), (2, 0); (0, 0), (0, 1)}. The support prediction gives
4 vertices of the resultant polytope: (0, 2, 2, 0, 0, 0, 0), (1, 1, 0, 2, 0, 0, 0),
(1, 1, 1, 0, 1, 0, 0), (2, 0, 0, 0, 2, 0, 0).

Specialization φ maps the coefficients to polynomials in x, y, z: φ(c0j) = {1−x,−1−x}, φ(c1j) = {−y, 2,−y},
φ(c2j) = {−z, 1}. Substituting cij in the predicted monomials by the corresponding univariate polynomials we
obtain 9 lattice points: (0, 0, 0), (0, 2, 0), (2, 2, 0), (2, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0), (2, 1, 0). We get
the canonical form of the implicit polynomial: x2 + y2 = a2.

Infinite cone. In some cases of rational parametrizations our method results in a multiple of the actual
implicit equation. For example, the infinite cone is a quadratic surface with canonical equation z2 = x2+y2

a2 , but
our result has degree 4 (see Table 5). This is due to the fact that we do not compute the minimal variety when
there are base points.

Sine surface. Rational representation:

x =
2t

1 + t2
, y =

2s
1 + s2

, z =
2s+ 2t− 2st2 − 2ts2

1 + s2 + t2 + s2t2
.

Applying support prediction we obtain 1027 lattice points in the resultant polytope. Removing duplicates
leaves 87 distinct matrix entries. Solving the linear system, we obtain a kernel vector with 66 nonzero entries.
Meanwhile, substituting cij by the corresponding univariate polynomials leads to a polytope with 125 lattice
points; solving the linear system yields 7 nonzero kernel-vector entries. The implicit polynomial is −2y2z2 +
4x2y2z2 − 2x2y2 − 2x2z2 + z4 + y4 + x4.

6.3 Results

See the tables in the Appendix for all results concentrated. All experiments where performed on a Celeron
1.60GHz, 1Gb memory, linux machine.

In particular, tables 2,3 contain information on our experiments for curves, including runtimes (given in
sec.) on Maple v. 11. In table 3 columns are labeled as: degrees of parametric and implicit equations, number
of monomials in the parametric equations, number of lattice points in the resultant polytope when applying the
general support prediction method (“Lat.pts.”), size of the matrix constructed when applying the curve support
prediction [11] (field “Cur.m.”), time in seconds for the prediction routine and linear solving (“Cur.time”),
matrix size for using the general support prediction (“Gen.m.”), runtime for the removal of duplicates and
linear solving (“Gen.time”), and number of nonzero kernel-vector entries for the matrix based on the cij ’s
(“Gen.n.z.”), matrix size for the case when, after using general support prediction, we map the cij to univariate

9

polynomials (“Map.m.”), runtime for mapping and linear solving (“Map.time”), number of monomials of the
implicit curve (“Map.n.z.”).

Table 4, 5 contain the information on our experiments for surfaces. In table 5 columns are labeled as:
parametric and implicit degree, number of monomials in the parametric equations, number of lattice points in
the resultant polytope (“Lat.pts.”), matrix size with duplicates removed (“Gen.matr.”), runtime for duplicate
removal and solving (“Gen.time”), number of nonzero entries of the kernel vector (“Gen.nonzero”), matrix size
for mapping cij to univariate polynomials (“Map.matr.”), runtime for mapping and solving (“Map.time”), and
number of monomials of the implicit surface (“Map.nonzero”)

The tables contain blank entries (-) when the linear system appeared too large to try solving.
As expected (see table 3), the curve support prediction method shows far better results than the general

support prediction method applied to curves. Comparing the two matrix constructions, based on the general
support prediction, we conclude that, while in some cases mapping gives us a smaller matrix (e.g. Cardioid,
Nephroid), in most cases duplicate removal proves to be more effective (e.g. Folium of Descartes, Sine surface).
Another observation is that, right now, a significant fraction of the complexity is due to the general support
prediction method, which can readily be improved by current work in our team or by using other prediction
methods such as tropical geometry.

7 Current work

To improve numerical stability, we may use more evaluation points than monomials, thus forming a rectangular
matrix to which we apply SVD, as explained following equation (8). Our current work examines whether some
matrix structure can be revealed while exploiting the freedom in choosing appropriate τ values to evaluate
the monomials. Our team strives to improve the support calculating algorithm [9] for arbitrary-dimensional
hypersurfaces.

We consider specific challenges, such as the bicubic surface [14], of implicit degree 18, containing 1330 terms:
the approach of [12] could not handle it because it generates 737129 regular triangulations (by TOPCOM) in
a file of 383MB. Also, there is a surface challenge suggested by [15] and meant for a practical problem, with
parametrization expressions of total degrees 9,9,6, respectively.

Our approach represents an implicit (hyper)surface by a kernel vector. It is challenging to devise suitable
CAGD algorithms that exploit this representation, e.g. for surface-surface intersection, as in [8]. Another
practical problem is to implicitize curve or surface splines defined by k segments or patches, respectively.
Assuming the k parametric representations yield polynomials with (roughly) the same Newton polytopes, one
could use the implicit polytope defined by any of these systems. Then, we can form a single matrix M and
evaluate it over points spanning all k segments or patches, thus expecting a single (approximate) implicit
polynomial.

It is possible to approximate k (pieces of) manifolds with a single implicit equation, by applying SVD on
[M1 · · ·Mk]>. We could also extend our approach to interpolating the implicit polynomial in other bases, such
as Bernstein or Lagrange, by predicting the resultant support in these bases.

Acknowledgement. IZE and TK are partially supported by Marie-Curie Initial Training Network “SAGA”
(ShApes, Geometry, Algebra), FP7-PEOPLE contract PITN-GA-2008-214584.

References

[1] M. Aigner, A.Poteaux, B. Juttler. Approximate implicitization of space curves. Symbolic & Numer. Comp,
Springer, 2011. To appear

[2] R. Corless, M. Giesbrecht, I. S. Kotsireas, and S. Watt. Numerical implicitization of parametric hypersur-
faces with linear algebra. In Proc. AISC, pp. 174–183, 2000.

[3] D. A. Cox, J. B. Little, and D. O’Shea. Using Algebraic Geometry, vol. 185 of GTM. Springer, 1998.

[4] M. Cueto, E. Tobis, and J. Yu. An implicitization challenge for binary factor analysis. J. Symbolic
Computation, 45(12):1296–1315, 2010.

[5] M. A. Cueto. Tropical Implicitization. PhD thesis, Dept Mathematics, UC Berkeley, 2010.

[6] C. D’Andrea and M. Sombra. The Newton polygon of a rational plane curve. Math. in Computer Science,
4(1):3–24, 2010.

[7] A. Dickenstein, E. M. Feichtner, and B. Sturmfels. Tropical discriminants. J. AMS, 1111–1133, 2007.

10

[8] T. Dokken and J. B. Thomassen. Overview of approximate implicitization. Topics in algebraic geometry
and geometric modeling, 334:169–184, 2003.

[9] I. Z. Emiris, V. Fisikopoulos, and C. Konaxis. Regular triangularions and resultant polytopes. In Proc.
Europ. Workshop Comp. Geometry, pp. 137–140, 2010.

[10] I. Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit equation. Tech.
Report 0811.0103v1, arXiv, 2007.

[11] I. Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit equation. Math. in
Computer Science, Special Issue, 4(1):25–44, 2010.

[12] I.Z. Emiris and I. S. Kotsireas. Implicit polynomial support optimized for sparseness. In Proc. Conf. Com-
put. science Appl., pp. 397–406, Springer, 2003

[13] A. Esterov and A. Khovanski. Elimination theory and Newton polytopes. ArXiv Math., Nov. 2006.

[14] L. Gonzalez-Vega. Implicitization of parametric curves and surfaces by using multidimensional Newton
formulae. J. Symbolic Comput., 23(2-3):137–151, 1997.

[15] R. Krasauskas. Personal communication, 2011.

[16] I. S. Kotsireas and E. Lau. Implicitization of polynomial curves. In Proc. ASCM, pp. 217–226, Beijing,
2003.

[17] A. Marco and J. Martinez. Implicitization of rational surfaces by means of polynomial interpolation. CAGD,
19:327–344, 2002.

[18] J. Rambau. TOPCOM: Triangulations of point configurations and oriented matroids. Intern. Conf. Math.
Software, pp. 330–340. World Scientific, 2002.

[19] M. Shalaby and B. Jüttler. Approximate implicitization of space curves and of surfaces of revolution.
Algebraic Geometry & Geom. Modeling, pp. 215–228. Springer, 2008.

[20] B. Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin., 3:207–236, 1994.

[21] B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of the implicit equation. Moscow Math. J., 7(2),
2007.

[22] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes. In Soft. for Algebraic Geom,
vol. 148 of IMA pp. 111–131, Springer, 2008.

[23] B. Sturmfels and J. T. Yu. Minimal polynomials and sparse resultants. In Proc. Zero-dimensional schemes
(Ravello, 1992), pp. 317–324. De Gruyter, 1994.

[24] E. Wurm, J. Thomassen, B. Juttler, T. Dokken. Comparative benchmarking of methods for approximate
implicitization. In Geom. Modeling & computing 2003, pp. 537–548. 2004

[25] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston, 1993.

Appendix

11

Table 2: Curves
Curve Parametric form Implicit polynomial
Cardioid a(2 cos(t)− cos(2t)); a(2 sin(t)− sin(2t)) −3a4 − 6a2y2 + y4 + 8a3x− 6a2x2 + 2x2y2 + x4

Conchoid a+ cos(t); a tan(t) + sin(t) a2y2 − 2axy2 + a2x2 − x2 + x2y2 − 2ax3 + x4

Folium of Descartes
3at

1 + t3
;

3at2

1 + t3
y3 − 3xy + x3

Nephroid a(3 cos(t)− cos(3t)); a(3 sin(t)− sin(3t)) −64− 60y2 − 12y4 + y6 + 48x2−
24x2y2 + 3x2y4 − 12x4 + 3x4y2 + x6

Ranunculoid 6 cos(t)− cos(6t); 6 sin(t)− sin(6t) −52521875− 1286250x2 − 1286250y2−
−32025(x2 + y2)2 + 93312x5 − 933120x3y2+
+466560xy4 − 812(x2 + y2)3 − 21(x2 + y2)4−
−42(x2 + y2)5 + (x2 + y2)6

Talbot’s curve
(a2 + c2 sin2(t)) cos(t)

a
; −16a4c8 + 32a6c6 − 16a8c4 − 8a6b2c2y2+

(a2 − 2c2 + c2 sin2(t)) sin(t)
b

+32a4b2c4y2 − 8a2b2c6y2 − a4b4y4 + 10a2b4c2y4−
−b4y4c4 + b6y6 + 8a8c2x2 + 8a6c4x2 − 32a4c6x2+
+16a2c8x2 − 2a6b2x2y2 + 2a4b2c2x2y2−
−20a2b2c4x2y2 + +3a2b4x2y4 − a8x4−
−8a6c2x4 + 8a4c4x4 + 3a4b2x4y2 + a6x6

Tricuspoid a(2 cos(t) + cos(2t)); a(2 sin(t)− sin(2t)) −27a4 + 18a2y2 + y4 + 24axy2+
+18a2x2 + 2x2y2 − 8 ∗ ax3 + x4

Witch of Agnesi at;
a

1 + t2
−a3 + a2y + x2y

Table 3: Curves - results
Curve Par. Im. Par. Lat. Cur. Cur. Gen. Gen. Gen. Map. Map. Map.

deg. deg. m.nr. pts. m. time m. time n.z. m. time n.z.
Cardioid 4,4 4 3,4 33 15 0.128 33 0.248 33 25 0.656 7
Conchoid 2,3 4 2,4 6 15 0.094 6 0.096 6 15 0.308 6
Folium of Descartes 3,3 3 3,3 10 10 0.092 5 0.032 3 11 0.144 3
Nephroid 4,4 6 4,5 454 28 0.256 426 - - 49 5.452 10
Ranunculoid 12,12 12 7,12 - 91 8809.43 - - - - - -
Talbot’s curve 6,6 6 4,7 1600 28 109.342 421 - - - - 23
Tricuspoid 4,4 4 3,4 33 15 0.216 33 0.236 33 25 0.540 8
Witch of Agnesi 1,2 3 2,2 2 4 0.016 2 0.044 2 4 0.048 3

12

Table 4: Surfaces
Surface Parametric form Implicit polynomial
Infinite cylinder a cos(t); a cos(t); s −a2 + y2 + x2

Hyperbolic paraboloid ts; t;
s2

b2
− t2

a2
−x2b2 + y2a2 − za2b2

Infinite cone at cos(s); at sin(s); t x2z2 + y2z2 − a2z4

Whitney umbrella ats; at; as2 y2z − ax2

Monkey saddle at; as; a(t3 − 3ts2) −3xy2 − a2z + x3

Handkerchief surface at; as; a(
t3

3
+ 2(t2 − s2) + ts2) −3a2z + 3xy2 + x3 + 6x2a− 6ay2

Crossed surface at; as; at2s2 −a3z + x2y2

Quartoid t; s; − (t2 + s2)2

a3
za3 + x4 + 2x2y2 + y4

Peano surface t; s; (2t2 − as)(as− t2) z + 2x4 − 3x2ya+ y2a2

Bohemian dome cos(t); sin(t) + cos(s); sin(s) 2x2y2 − 2x2z2 − 4y2 + x4 + z4 + 2y2z2 + y4

Swallowtail surface a(ts2 + 3s4); a(−2ts− 3s3); at −15axy2z + 3ay4 + y2z3 − 4xz4 + 12ax2z2 − 9a2x3

Sine surface sin(t); sin(s); sin(t+ s) −2y2z2 + 4x2y2z2 − 2x2y2 − 2x2z2 + z4 + y4 + x4

Enneper’s surface t− t3

3
+ ts2; 352836− 78732x2y2z + 749412z2 + 101088z3x2y−

2− s3

3
+ t2s; −303264x2yz2 − 25272x2y2z3 − 62127z5 + 75816x2y2z2+

t2 − s2 +314928x2yz − 4860x4z3 − 2916x6 + 69984x2y3+
+23328y4z2 − 26244y4z + 72576yz5 + 997272yz−
−669222y2z − 18144y2z5 + 209952y3z − 186624y3z2+
+2592x2z5 − 106920x2z3 + 34992x4 + 5832x4z2+
+8748x4y2 − 34992x4y − 183708x2y2 − 268272z4y−
−1122660z2y + 602640z3y + 67068z4y2 − 6912z6y+
+653913z2y2 + 1728z6y2 − 228420z3y2 + 38880z3y3−
−4860z3y4 − 2304z8 − 536544y3 + 183708y4−
−34992y5 + 2916y6 − 577368z − 5616z6 − 8748x2y4−
−34992x2 + 2916x2z4 + 305451x2z2 + 7776z7−
−314928x2z + 256z9 − 524151z3 + 916353y2+
+263898z4 + 174960x2y − 866052y − 1728x2z6

Table 5: Surfaces - results
Surface Param. Impl. Param. Lat. Gen. Gen. Gen. Map. Map. Map.

degree degree m.nr. pts. matr. time nonzero matr time nonzero
Infinite cylinder 2,2,1 2 2,3,2 4 4 0.036 4 9 0.072 3
Hyperbolic paraboloid 1,1,2 2 2,2,3 3 3 0.028 3 7 0.064 3
Infinite cone 3,2,1 4 4,3,2 14 8 0.040 6 19 0.224 3
Whitney umbrella 2,1,2 3 2,2,2 2 2 0.024 2 4 0.056 2
Monkey saddle 1,1,3 3 2,2,3 3 3 0.028 3 8 0.064 3
Handkerchief surface 1,1,3 3 2,2,5 2 2 0.020 2 4 0.036 5
Crossed surface 1,1,4 4 2,2,2 5 5 0.032 5 10 0.072 2
Quartoid 1,1,4 4 2,2,4 4 4 0.012 4 16 0.140 4
Peano surface 1,1,4 4 2,2,4 4 4 0.020 4 10 0.080 4
Bohemian dome 2,4,2 4 2,6,3 142 58 2.764 - 125 83.362 7
Swallowtail surface 4,3,1 5 3,3,2 12 12 0.052 12 25 0.432 6
Sine surface 2,2,4 6 3,3,8 1027 87 9.244 66 125 107.102 7
Enneper’s surface 3,3,2 9 4,3,3 439 258 74.304 258 106 33.562 57

13

	Abstract
	Introduction
	Existing interpolation methods
	Exact implicitization
	Approximate implicitization

	Support prediction
	Sparse elimination

	Implicitization algorithm
	Building the matrix
	Maple Implementation

	Experiments
	Curves
	Surfaces
	Results

	Current work

