
Implicitization of curves and surfaces using predicted support

Ioannis Z. Emirisa, Tatjana Kalinkaa, Christos Konaxisb, Thang Luu Baa,c ∗

aDepartment of Informatics & Telecommunications, University of Athens, Greece
bArchimedes Center for Modeling, Analysis & Computation (ACMAC), University of Crete, Heraklio, Greece

cDepartment of Mathematics, Hanoi National University of Education, Hanoi, Vietnam

December 15, 2011

Abstract

We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by
interpolating the coefficients of the implicit equation. For this, one may use any method for predicting the
implicit support. We focus on methods that exploit input structure in the sense of sparse (or toric) elimi-
nation theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant
theory. We implement our methods on Maple, and some on Matlab as well, and study their numerical
stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate im-
plicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all
tested examples. In building a square or rectangular matrix, an important issue is (over)sampling the given
curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy
when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers
is the method of choice.

1 Introduction

Implicitization is the problem of changing the representation of parametric objects to implicit form. It lies at
the heart of several questions in computer-aided geometric design (CAGD) and geometric modeling, including
intersection problems and membership queries. In several situations, it is important to have both representations
available. Implicit representations encompass a larger class of shapes than parametric ones. Moreover, the
class of implicit curves and surfaces is closed under certain operations such as offsetting, while its parametric
counterpart is not. Implicitization is also of independent interest, since certain questions in areas as diverse as
robotics or statistics, e.g. [CTY10], reduce to deriving the implicit form.

Here we follow a classical symbolic-numeric method, which reduces implicitization to interpolating the
coefficients of the defining equation. We implement interpolation by exact or numeric linear algebra, following a
symbolic phase of implicit support prediction, which computes a (super)set of the monomials appearing in the
implicit equation. Standard methods to determine the unknown coefficients by linear algebra are divided in two
main categories, dense and sparse methods. The former require only a bound on the total degree of the target
polynomial, whereas the latter require a bound on the number of its terms, thus exploiting any sparseness of
the target polynomial. A priori knowledge of the support helps significantly, by essentially answering the first
step of sparse interpolation algorithms.

One contribution of this paper is to exploit sparse (or toric) variable elimination theory to predict the implicit
Newton polytope, i.e. the convex hull of the implicit support.

Definition 1. Given a polynomial∑
a∈Ai

ciat
a ∈ R[t1, . . . , tn], ta = ta11 · · · tann , a ∈ Nn, cia ∈ R− {0},

its support is the set Ai = {a ∈ Nn : cia 6= 0}; its Newton polytope is the convex hull of the support.

One reason for revisiting interpolation of the implicit coefficients is the current increase of activity around
various approaches capable of predicting the implicit support. Our team has been focusing on sparse elimi-
nation theory [EFKP11, EKP10, EK03, EKK11]. Recent support prediction methods notably include tropical
geometry methods, e.g. [Cue10, DS10, JY11, STY07, SY08]. The present work relies on the implicit support

∗Email: {emiris,kalinkat,thanglb}@di.uoa.gr, ckonaxis@acmac.uoc.gr

1

(2,3)

(1,0)

(0,2)
N(f0)

f 0 = x2y3+3x−5y2 f 1 = x3−x2+y2x−3y

(1,2)

(3,0)(2,0)

(0,1) N(f1)

Figure 1: Examples of Newton polygons N(fi) of polynomials fi ∈ Z[x, y].

predicted by any method. In fact, [SY08, sec.4] states that “Knowing the Newton polytopes reduces computing
the [implicit] equation to numerical linear algebra. The numerical mathematics of this problem is interesting
and challenging [...] ” Our implementations interface linear algebra interpolation with the implicit support
predictors of [EFKP11, EKP10], but we expect to also interface predictors from [Cue10, EFKP11]. In the
sequel, we juxtapose the use of exact and numerical linear algebra.

In practical applications of CAGD, precise implicitization often can be impossible or very expensive to ob-
tain. Approximate implicitization over floating-point numbers appears to be an effective solution [DT03, SJ08,
BD10a, BD10b]. We discuss approximate implicitization, in the setting of sparse elimination. Approximate
implicitization is one of the main motivations for reducing implicitization to interpolation of the implicit co-
efficients. We offer a Maple implementation, available upon request from the authors, based on our software
for computing implicit polytopes [EFKP11]. The latter is also available as a C++ implementation1 We study
the numerical stability and efficiency of our algorithms on several classes of curves and surfaces. One central
question is how to evaluate the computed monomials to obtain a suitable matrix, when performing exact or
numerical matrix operations. We compare results obtained by using random integers, random complex unitary
numbers and complex roots of unity. It appears that complex unitary numbers offer the best tradeoff of efficiency
and accuracy for numerical computation, whereas random integers are preferred for exact kernel computation.

Let us now define the problem formally. A parametrization of a geometric object of co-dimension one, in a
space of dimension n+ 1, can be described by parametric map:

f : Rn → Rn+1 : t = (t1, . . . , tn) 7→ x = (x0, . . . , xn),

where t is the vector of parameters and f := (f0, . . . , fn) is a vector of continuous functions, including polyno-
mial, rational, and trigonometric functions, also called coordinate functions. These are defined on some product
of intervals Ω := Ω1×· · ·×Ωn, Ωi ⊆ Rn. In the case of trigonometric input, it may be converted to polynomials
by the standard half-angle transformation

sin θ =
2 tan θ/2

1 + tan2 θ/2
, cos θ =

1− tan2 θ/2

1 + tan2 θ/2
,

where the parametric variable becomes t = tan θ/2.
The implicitization problem asks for the smallest algebraic variety containing the closure of the image of the

parametric map f : t 7→ f(t). This image is contained in the variety defined by the ideal of all polynomials
p(x0, . . . , xn) s.t. p(f0(t), . . . , fn(t)) = 0, for all t in Ω. We restrict ourselves to the case when this is a principal
ideal, and we wish to compute its defining polynomial

p(x0, . . . , xn) = 0, (1)

given its Newton polytope, which we call implicit polytope, or a polytope that contains the implicit polytope.
If the degree of the parametrization is θ > 1, our method computes the implicit equation to the power θ.

We can regard the variety in question as the projection of the graph of map f to the last n+ 1 coordinates.
If f is polynomial, implicitization is reduced to eliminating t from the polynomial system

F̄i := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,

seen as polynomials in t with coefficients which are functions of the xi. This is also the case for rational
parameterizations

xi =
fi(t)

gi(t)
, i = 0, . . . , n, (2)

1http://sourceforge.net/projects/respol/files/

2

which can be represented as polynomials

F̄i := xigi(t)− fi(t) ∈ (R[xi])[t], i = 0, . . . , n, (3)

where we have to take into account that the gi(t) cannot vanish by adding the polynomial

F̄n+1 = 1− g0(t) · · · gn(t)y, (4)

where y is a new variable.
Several algorithms exist for implicitization, including methods based on resultants, Gröbner bases, µ-bases

and moving surfaces, and residues. Our approach relies on any support prediction method, see sect. 3. We
focus on sparse (or toric) elimination: In the case of curves, the implicit support is directly determined for
generic parametric expressions with the same supports [EKP10]. In the general case, the implicit support is
provided by that of a sparse resultant whose Newton polytope is projected to the space of the xi’s [EFKP11].
Our approach can handle fi with (certain) symbolic nonzero coefficients, thus computing the implicit polytope
for entire families of parametric objects, when used with exact solving.

The rest of the paper is structured as follows. Previous work is discussed in the next two sections: Section 2
discusses existing methods for interpolating the implicit polynomial’s coefficients by linear algebra. Section 3
discusses implicit support prediction and sparse elimination theory. Our algorithm is detailed in section 4,
where we discuss complexity issues, present some examples, and mention possible algorithmic extensions. The
algorithm’s implementation, performance, and numerical accuracy in the case of approximate implicitization are
described in section 5. We conclude with future work in section 6. The Appendix contains examples of exact
and approximate implicit equations of parametric curves and surfaces used in our experiments, and further
experimental results.

A preliminary version of partial results from this paper appeared as [EKK11].

2 Existing interpolation methods

This section examines how implicitization had been reduced to interpolation. Throughout the paper, we use
interpolation to refer to the method of determining the implicit coefficients from the implicit support and its
evaluations on points of our choice. Of course, these points lie in the space of parameters.

Let S be (a superset of) the support of the implicit polynomial p(x0, . . . , xn) = 0, ~p be the |S| × 1 vector
of its unknown coefficients, and let m = |S|. We refer to S as implicit support, with the understanding that it
may be a superset of the actual support.

Sparse interpolation is the problem of interpolating a multivariate polynomial when information of its support
is given [Zip93]. This may simply be a bound σ on support cardinality, then sparse interpolation is achieved in
O(m3δn log n + σ3), where δ bounds the output degree per variable, m is the actual support cardinality, and
n the number of variables [BOT88, KL89]. A probabilistic approach runs in O(m2δn) [Zip90] and requires as
input only δ.

For the sparse interpolation of resultants, the quasi-Toeplitz structure of the matrix allows us to reduce com-
plexity by one order of magnitude, when ignoring polylogarithmic factors, and arrive at a quadratic complexity
in matrix size [CKL89]. This was extended to the case of sparse resultant matrices [EP02, EP05].

Our matrices reveal what we call quasi-Vandermonde structure, since the matrix columns are indexed by
monomials and the rows by values on which the monomials are evaluated. This reduces matrix-vector multiplica-
tion to multipoint evaluation of a multivariate polynomial. It is unclear how to achieve this post-multiplication
in time quasi-linear in the size of the polynomial support when the evaluation points are arbitrary, as in our
case. Existing work achieves quasi-linear complexity for specific points [EP02, Pan94, Sau04, vdHS10].

2.1 Exact implicitization

The most direct method to reduce implicitization to linear algebra is to construct a |S|×|S|matrixM , indexed by
monomials with exponents in S (columns) and |S| different values (rows) at which all monomials get evaluated.
Then, vector p is in the kernel of M . This idea was used in [EK03, MM02, SY08]; it is the approach explored
in this paper, extended to an approximate implicitization as well.

In [STY07], they propose evaluation at unitary τ ∈ (C∗)n, i.e., of modulus 1. This is one of the evaluation
strategies examined below. Another approach was described in [CGKW00], based on integration of matrix
M = SST , over each parameter t1, . . . , tn. Then, p is in the kernel of M . In fact, the authors propose
to consider successively larger supports in order to capture sparseness. This method covers a wide class of
parameterizations, including polynomial, rational, and trigonometric representations, but the size of M is quite
big and matrix entries take big values, so it is difficult to control its numeric corank. In some cases, its corank
is ≥ 2. Thus, the accuracy, or quality, of the approximate implicit polynomial is unsatisfactory. The resulting

3

matrix has Henkel-like structure [KL03]. When it is computed over floating-point numbers, the resulting implicit
polynomial does not necessarily have integer coefficients. In [CGKW00], they discuss some post-processing to
yield the integer relations among the coefficients, but only for small examples.

2.2 Approximate implicitization

Approximate implicitization over floating-point numbers was introduced by T. Dokken and co-workers in a
series of papers. Today, there are direct [DT03, WTJD04] and iterative techniques [APJ11]. We describe the
basic direct method [DT03]: Given a parametric (spline) curve or surface x(t), t ∈ Ω ⊂ Rn, the goal is to find
polynomial q(x) such that q(x(t) + η(t)g(t)) = 0, where g(t) is a continuous direction function with Euclidean
norm ‖g(t)‖ = 1 and η(t) a continuous error function with |η(t)| ≤ ε. Now, q(x(t)) = (Mp)Tα(t), where matrix
M is built from monomials in x. It may be constructed as in this paper, or it may contain a subset of the
monomials of the implicit support. Moreover, p is the vector of implicit coefficients, hence Mp = 0 returns
the exact solution, and α(t) is the basis of the space of polynomials which describes q(x(t)), and is assumed
to form a partition of unity and to be nonnegative over Ω:

∑
i αi = 1, αi ≥ 0, ∀i, t ∈ Ω. One may use the

Bernstein-Bézier basis with respect to Ω, in the case of curves, or a triangle which contains Ω, in the case of
surfaces.

In [DT03, p.176] the authors propose to translate to the origin and scale the parametric object, so as to lie
in [−1, 1]n, in order to improve the numerical stability of the linear algebra operations. In our experiments,
we found out that using unitary complex values leads to better numerical stability. Since both our and their
methods rely on SVD, our experiments confirm their findings.

The idea of the above methods is to interpolate the coefficients using successively larger supports, starting
with a quite small support and extending it so as to reach the exact one. Existing approaches have used upper
bounds on the total implicit degree, thus ignoring any sparseness structure. Our methods provide a formal
manner to examine different supports, in addition to exploiting sparseness; we are currently investigating this
idea.

In the context of sparse elimination, the Newton polytope captures the notion of degree. Given an implicit
polytope we can naturally define candidates of smaller support, the equivalent of lower degree in classical
elimination, by an inner integral offset of the implicit polytope. The offset operation can be repeated, thus
producing a list of implicit supports yielding smaller implicit equations with larger approximation error. Clearly,
the computed implicit equation is of lower degree than the actual one. It is an open question to bound the
difference between the input geometric object and the zero-set, or variety, defined by the approximate equation.
The specific algorithm and software used to compute the implicit support, namely [EFKP11], should offer the
possibility of a faster approximate computation of the implicit polytope. This is particularly relevant in the
present context and we plan to further investigate it when completed.

3 Support prediction

This section describes our methods for computing the implicit support, which is based on the sparse resultant,
and any information we obtain from this computation towards computing the implicit equation.

Most existing approaches for support prediction employ total degree bounds on the implicit polynomial to
compute a superset of the implicit support, e.g. [CGKW00]. This fails to take advantage of the sparseness of
the input in order to accelerate computation, and to exploit sparseness in the implicit polynomial in the sense
of prop. 6. For this, computing the Newton polytope of a rational hypersurface was posed in [SY94] for generic
Laurent polynomial parameterizations, in the framework of sparse elimination theory.

Algorithms based on tropical geometry have been offered in [DFS07, STY07, SY08]. This method computes
the abstract tropical variety of a hypersurface parameterized by generic Laurent polynomials in any number of
variables, thus yielding its implicit support; it is implemented in TrIm. For non-generic parameterizations of
rational curves, the implicit polygon is predicted. In higher dimensions, the following holds:

Proposition 1. [STY07, prop.5.3] Let f0, . . . , fn ∈ C[t±11 , . . . , t±1n] be any Laurent polynomials whose ideal
of algebraic relations is principal, say I = 〈g〉, and Pi ⊂ Rn the Newton polytope of fi. Then, the polytope
constructed combinatorially from P0, . . . , Pn using tropical geometry contains a translate of the Newton polytope
of g.

The tropical approach was improved in [Cue10] to yield the precise implicit polytope in R3 for generic
parameterizations of surfaces in 3-space. In [JY11], they describe efficient algorithms implemented in the GFan
library [Jen10] for the computation of Newton polytopes of specialized resultants, which may then be applied
to predict the implicit polytope. Sparse elimination has been used for the same task [EFKP11], as discussed
below. The latter is faster on dimensions relevant here, namely for projected polytopes in up to 5 dimensions.

4

The Newton polygon of a curve parameterized by rational functions, without any genericity assumption,
is determined in [DS10]. In a similar direction, an important connection with combinatorics was described
in [EK06], as they showed that the Newton polytope of the projection of a generic complete intersection is
isomorphic to the mixed fiber polytope of the Newton polytopes associated to the input data.

In [EKP10], sparse elimination is applied to determine the vertex representation of the implicit Newton
polygon of planar curves. The method uses mixed subdivisions of the input Newton polygons and regular
triangulations of pointsets defined by the Cayley trick. It can be applied to polynomial and rational param-
eterizations, where the latter may have the same or different denominators. The method offers a set of rules
that, applied to the supports of sufficiently generic rational parametric curves, specify the 4, 5, or 6 vertices of
the implicit polygon. In case of non-generic inputs, this polygon is guaranteed to contain the Newton polygon
of the implicit equation. The method can be seen as a special case of the general approach based on sparse
elimination.

In [EK03] a method relying on sparse elimination for computing a superset of the generic support from the
resultant polytope is discussed, itself obtained as a (non orthogonal) projection of the secondary polytope. The
latter was computed by calling Topcom [Ram02]. This approach was quite expensive and, hence, applicable
only to small examples; it is refined and improved in this paper.

3.1 Sparse elimination theory

Sparse, or toric, elimination subsumes classical, or dense, elimination in the sense that, when Newton polytopes
equal the corresponding simplices, the former bounds become those of the classical theory [EK03, sec.3], [SY94,
thm.2(2)].

Consider the polynomial system F̄0, . . . , F̄n ∈ K[t] as in (3), defining a hypersurface, and let Ai ⊂ Zn be
the support of F̄i and Pi ⊂ Rn the corresponding Newton polytope. The family A0, . . . , An is essential if they
jointly affinely span Zn and every subset of cardinality j, 1 ≤ j < n, spans a space of dimension ≥ j. It is
straightforward to check this property algorithmically and, if it does not hold, to find an essential subset. In
the sequel, the input A0, . . . , An ⊂ Zn is supposed to be essential.

For simplicity, in what follows we do not consider the extra polynomial in (4) as part of our polynomial
systems. This is equivalent to considering polynomial parameterizations. However, it is straightforward to
generalize the discussion below to the rational case.

For each F̄i, i = 0, . . . , n, we define a polynomial Fi ∈ K[t] with symbolic coefficients cij and the same
support Ai, i.e. a generic polynomial with respect to Ai:

Fi =

|Ai|∑
j=1

cijt
aij ∈ K[t], aij ∈ Ai, i = 0, . . . , n. (5)

Obviously, each Fi has also the same Newton polytope Pi as F̄i.
Now we introduce our main tool, namely the resultant of an overconstrained polynomial system. The

resultant of polynomial system (5) is an irreducible polynomial

R ∈ Z[cij : i = 0, . . . , n, j = 1, . . . , |Ai|],

defined up to sign, vanishing iff F0 = F1 = · · · = Fn = 0 has a common root in a specific variety: This variety
is the projective variety Pn over the algebraic closure K of K, in the case of projective (or classical) resultants,
or the toric variety X defined by the Ai’s in the case of sparse (or toric) resultants; X contains the topological

torus as a dense subset: (K
∗
)n ⊂ X, and is itself a projective variety in a space of dimension much larger than

n. The Newton polytope N(R) of the resultant polynomial is the resultant polytope. We call any monomial
which corresponds to a vertex of N(R) an extreme term of R.

The Minkowski sum A+B of convex polytopes A,B ⊂ Rn is the set A+B = {a+ b | a ∈ A, b ∈ B} ⊂ Rn.
A tight mixed subdivision of P = P0 + · · · + Pn, is a collection of n-dimensional convex polytopes σ, called
(Minkowski) cells, s.t.: They form a polyhedral complex that partitions P , and every cell σ is a Minkowski sum
of subsets σi ⊂ Pi: σ = σ0 + · · ·+ σn, where dim(σ) = dim(σ0) + · · ·+ dim(σn) = n.

A cell σ is called vi-mixed if it is the Minkowski sum of n one-dimensional segments Ej ⊂ Pj and one vertex
vi ∈ Pi : σ = E0 + · · · + vi + · · · + En. A mixed subdivision is called regular if it is obtained as the projection
of the lower hull of the Minkowski sum of lifted polytopes P̂i := {(pi, ω(pi)) | pi ∈ Pi}. If the lifting function ω
is sufficiently generic, then the induced mixed subdivision is tight.

The mixed volume of n polytopes in Rn equals the sum of the volumes of all the mixed cells in a mixed
subdivision of their Minkowski sum. We recall a surjection from the regular tight mixed subdivisions to the
vertices of the resultant polytope:

5

Theorem 2. [Stu94] Given a polynomial system as in (5) and a regular tight mixed subdivision of the Minkowski
sum P = P0 + · · ·+ Pn of the Newton polytopes of the system polynomials, an extreme term of the resultant R
equals

c ·
n∏
i=0

∏
σ

c
vol(σ)
iσi

where σ = σ0 + σ1 + · · ·+ σn ranges over all σi-mixed cells, and c ∈ {−1,+1}.

Computing all regular tight mixed subdivisions reduces, due to the so-called Cayley trick, to computing all
regular triangulations of a point set of cardinality |A0|+ · · ·+ |An| in dimension 2n. Let the Cayley embedding
of the Ai’s be

A :=

n⋃
i=0

(Ai × {ei}) ⊂ Z2n, ei ∈ Nn,

where e0, . . . , en form an affine basis of Rn: e0 is the zero vector, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n.

Proposition 3. [Cayley trick] [GKZ94] There exist bijections between: the regular tight mixed subdivisions, the
tight mixed subdivisions, or the mixed subdivisions of the convex hull of A0 + · · · + An and, respectively, the
regular triangulations, the triangulations, or the polyhedral subdivisions of A.

The set of all regular triangulations corresponds to the vertices of the secondary polytope Σ(A) of A [GKZ94].
To compute the resultant polytope, one can enumerate all regular triangulations of A: it is equivalent to
enumerating all regular tight mixed subdivisions of the convex hull of A0 + · · · + An. Each such subdivision
yields a vertex of N(R). This method is proven to be inefficient even for medium sized inputs [EK03]; instead,
we follow a different approach.

3.2 The implicit polytope

To predict the Newton polytope of the implicit equation, or implicit polytope, we use the following computation
of resultant polytopes and their orthogonal projections, see [EFKP11]. Note that the latter correspond to generic
specializations of the resultant.

Given the supports Ai, i = 0, . . . , n of the polynomials in (5), there is an efficient algorithm that computes
the resultant polytope N(R) of their sparse resultant R without enumerating all mixed subdivisions of the
convex hull of A0 + · · · + An [EFKP11]. More precisely, they develop an incremental algorithm to compute
N(R) by considering an equivalence relation on mixed subdivisions, where two subdivisions are equivalent iff
they specify the same resultant vertex. The class representatives are vertices of the resultant polytope. The
algorithm exactly computes vertex- and halfspace-representations of the resultant polytope or its projection.
It avoids computing Σ(A), but uses the above relationships to define an oracle producing resultant vertices
in a given direction. It is output-sensitive as it computes one mixed subdivision per equivalence class, and
is the fastest today in dimension up to 5; in higher dimensions it is competitive with the implementation of
[JY11], relying on the GFan library. Moreover, there is an approximate variant that computes polytopes with
about 90% of the true volume with a speedup of up to 25 times; this should be very relevant to approximate
implicitization with supports which may be smaller than the exact support.

Let us formalize the way that the polytope N(R) is used in implicitization. Consider an epimorphism of
rings

φ : K → K ′ : cij 7→ c′ij , (6)

yielding a generic specialization of the coefficients cij of the polynomial system in (5). We denote by F ′i :=
φ(Fi), i = 0, . . . , n, the images of Fi’s under φ. Let R := Res(F0, . . . , Fn) be the resultant of polynomial system
in (5) over K and H := Res(F ′0, . . . , F

′
n) be the resultant of F ′0, . . . , F

′
n over K ′. Then, the specialized sparse

resultant φ(R) coincides (up to a scalar multiple from K ′) with the resultant H of the system of specialized
polynomials provided that H does not vanish, a certain genericity condition is satisfied, and the parametrization
is generically 1-1 [CLO98],[SY94, thm.3]:

φ(R) = c ·H, c ∈ K ′. (7)

If the latter condition fails, then φ(R) is a power of H. When the genericity condition fails for a specialization
of the cij ’s, the support of the specialized resultant φ(R) is a superset of the support of H modulo a translation,
provided the sparse resultant does not vanish. This follows from the fact that the method computes the same
polytope as the tropical approach, whereas the latter is characterized in prop. 1. In particular, the resultant
polytope is a Minkowski summand of the fiber polytope Σπ(∆, P), where polytope ∆ is a product of simplices,
each corresponding to a support Ai, P =

∑n
i=0 Pi, and π is a projection from ∆ onto P . Then, Σ(∆, P), is

strongly isomorphic to the secondary polytope of the point set obtained by the Cayley embedding of the Ai’s,

6

[Stu94, sec.5]. The algorithm in [EFKP11] provides the Newton polytope of φ(R), and is employed by our
approach.

When specialization φ yields the coefficients of the polynomials in (3), i.e. φ(Fi) = F̄i, then H =
Res(F̄0, . . . , F̄n) = p(x0, . . . , xn), where p(x0, . . . , xn) is the implicit equation of the hypersurface defined by (3).
Equation (7) reduces to

φ(R) = c · p(x0, . . . , xn), c ∈ C[x0, . . . , xn],

hence [EFKP11] yields a superset of the vertices of the implicit polytope. The coefficients of the polynomials
in (5), which define the projection φ, are those who are specialized in linear polynomials in the xi’s.

The above discussion is summarized in the following result, which offers the theoretical basis of our approach.

Lemma 4. Given a parametric hypersurface, we formulate implicitization as an elimination problem, thus
defining the corresponding sparse resultant. The projection of the sparse resultant’s Newton polytope contains a
translate of the Newton polytope of the implicit equation.

Let us now give two techniques for improving our approach. The following lemma is used at preprocessing
before support prediction, since it reduces the size of the input supports.

Lemma 5. [JY11, lem.3.20] If aij ∈ Ai corresponds to a specialized coefficient of Fi, and lies in the convex hull
of the other points in Ai corresponding to specialized coefficients, then removing aij from Ai does not change
the Newton polytope of the specialized resultant.

Furthermore, in order to eliminate some extraneous monomials predicted by our support prediction method,
we may apply the following well-known degree bounds, generalized in the context of sparse elimination. For a
proof, the reader may refer to [EK03].

Proposition 6. The total degree of the implicit polynomial of the hypersurface corresponding to system (3) is
bounded by n! times the volume of the convex hull of A0 ∪ · · · ∪ An. The degree of the implicit polynomial in
some xj , j ∈ {0, . . . , n} is bounded by the mixed volume of the F̄i, i 6= j, seen as polynomials in t.

The classical results for the dense case follow as corollaries. Take a surface parameterized by polynomials
of degree d, then the implicit polynomial is of degree d2. For tensor parameterizations of bi-degree (d1, d2), the
implicit degree is 2d1d2. We use these bounds to reduce the predicted Newton polytope by intersecting it with
the halfspaces prescribed by the proposition.

The resultant polytope N(R) lies in R|A| but we shall see that it is of lower dimension. Let us describe the
hyperplanes in whose intersection lies N(R). For this, let A be the (2n + 1) × |A| matrix whose columns are
the points in the Ai, where each a ∈ Ai is followed by the i-th unit vector in Nn+1.

Proposition 7. [GKZ94] N(R) is of dimension |A| − 2n − 1. The inner product of any coordinate vector of
N(R) with row i of A is: constant, for i = 1, . . . , n, and equals the mixed volume of F0, . . . , Fj−1, Fj+1, . . . , Fn,
for j = i− (n+ 1), i = n+ 1, . . . , 2n+ 1.

The last n + 1 relations specify the fact that R is separately homogeneous in the coefficients of each Fi.
The proposition implies that one obtains an isomorphic polytope when projecting N(R) along 2n + 1 points
in ∪iAi, which affinely span R2n; this is possible because of the assumption that {A0, . . . , An} is an essential
family. Having computed the projection, we obtain N(R) by computing the missing coordinates as the solution
of a linear system: we write the aforementioned inner products as A[X V]T = C, where C is a known matrix
and [X V]T is a transposed |A| × u matrix, expressing the partition of the coordinates to unknown and known
values, where u is the number of N(R) vertices. If the first 2n + 1 columns of A correspond to specialized
coefficients, A = [A1A2], where submatrix A1 is of dimension 2n+1 and invertible, hence X = A−11 (C−A2V).

Knowledge of the resultant support can reduce resultant computation to interpolation of coefficients identical
to the kind of interpolation developed here for implicitization; this is also the premise of [CD06, Tan07]. To
sample points on the resultant hypersurface, one can use a parametrization of the resultant hypersurface, known
as Horn-Kapranov parametrization [Kap91], illustrated below.

Example 1. Let f0 = a2x
2 + a1x + a0, f1 = b1x

2 + b0, with supports A0 = {2, 1, 0}, A1 = {1, 0}. Their
(Sylvester) resultant is a polynomial in a2, a1, a0, b1, b0. The algorithm in [EFKP11] computes its Newton
polytope with vertices (0, 2, 0, 1, 1), (0, 0, 2, 2, 0), (2, 0, 0, 0, 2); it contains 4 points, corresponding to 4 potential
monomials a21b1b0, a

2
0b

2
1, a2a0b1b0, a

2
2b

2
0. The Horn-Kapranov parameterization of the resultant yields: a2 =

(2t1 + t2)t23t4, a1 = (−2t1 − 2t2)t3t4, a0 = t2t4, b1 = −t1t23t5, b0 = t1t5, where the ti’s are parameters. We
substitute these expressions to the predicted monomials, evaluate at 4 sufficiently random ti’s, and obtain a
matrix whose kernel vector (1, 1,−2, 1) yields R = a21b1b0 + a20b

2
1 − 2a2a0b1b0 + a22b

2
0.

The complexity of interpolating resultants is O∗(|S|2) where S is the set of lattice points in the predicted
resultant support, because the dominating stage is a kernel computation for a structured matrix M . Using

7

Weidemann’s approach, the main oracle is post-multiplication of M by a vector, which amounts to evalu-
ating a (n + 1)-variate polynomial at chosen points, and this can be done in quasi-linear complexity in |S|
[vdHS10, Pan94]. For certain classes of polynomial systems, when one computes the resultant in one or more
parameters, this may be competitive to current methods for resultant computation. The best such methods
rely on developing the determinant of a resultant matrix in these parameters [CE00, D’A02]. The matrix di-
mension is in O∗(tn degR) [Emi96], where degR is the total degree of R in all input coefficients, and t is the
scaling factor relating the input Newton polytopes, which is bounded by the maximum degree of the input
polynomials fi in any variable. Then, developing univariate resultants has complexity in O∗(t3.5n(degR)3.5)
[Emi96, EP02, EP05]. Hence, our approach improves the complexity when the predicted support is small
compared to t and degR, but further work on this topic is required.

4 Implicitization algorithm

The steps of our implicitization algorithm are given below, and apply to any support prediction method.
Input: Polynomial or rational parametrization xi = fi(t1, . . . , tn).
Output: Implicit polynomial p(xi) in the monomial basis in Nn+1.

1. We obtain (a superset of) the implicit polytope, and intersect it with the halfspaces described in prop. 6.

2. Compute all lattice points S ⊆ Nn+1 in the polytope.

3. Repeat µ ≥ |S| times: Select value τ ∈ Cn for t, evaluate xi(τ), i = 0, . . . , n, then evaluate each monomial
in S.

4. Construct the µ× |S| matrix M , solve M~p = 0 for p, and return the primitive part of polynomial ~p>S.

4.1 Building the matrix

We focus on two support prediction methods. The first applies only to curves and is described in [EKP10].
The second is general and computes the support of the resultant of system (3) and of its arbitrary specializa-
tions [EFKP11]. Both methods provide us a (super)set of the implicit vertices: the set of vertices of the polytope
N(φ(R)) of the specialized resultant φ(R), where R is the resultant of the system of polynomials in (5). This
polytope is then intersected with the halfspaces described in prop. 6. In the following, we abuse notation and
denote this intersection also by N(φ(R)).

We compute the m lattice points si contained in N(φ(R)) ⊂ Nn+1 to obtain the set S := {s1, . . . , sm}.
Each si = (si0, . . . , sin) is an exponent of a (potential) monomial xsi = x0(t)si0 . . . xn(t)sin of the implicit
polynomial, where xi(t) is given in (2) . We evaluate xi(t), i = 0, . . . , n at some τk, k = 1, . . . ,m. Let
x(τk)si = x0(τk)si0 . . . xn(τk)sin denote the evaluated i-th monomial xsi at τk. Thus, we construct an m ×m
matrix M with rows indexed by τ1, . . . , τm and columns by s1, . . . , sm:

M =

x(τ1)s1 · · · x(τ1)sm

... · · ·
...

x(τm)s1 · · · x(τm)sm

To improve the numerical stability of our algorithm, we may use µ > m evaluation points, so as to arrive at a
µ×m matrix M .

Lemma 8. Assume that we construct a µ×m matrix M , as above. Then, the vector of the implicit coefficients
lies in the matrix kernel, hence rank(M) < m. If the points x(τi), i = 1, . . . , µ are sufficiently generic, then M
has corank 1, i.e. rank(M) = m− 1. Then, if we solve M~p = ~0 for ~p, such that any of its entries equals 1, this
yields the coefficients of the implicit equation in a unique fashion.

4.2 Complexity

In this section we briefly analyze the asymptotic complexity of the main subroutines of our algorithm.
The complexity of the support prediction algorithm is given in [EFKP11, thm.10]. The second part of the

procedure is the computation of the lattice points contained in the predicted polytope. It is a NP-hard problem
to detect a lattice point in a polytope when the dimension of the polytope is an input variable. When the
dimension is fixed the algorithm in [BP99] counts the number of lattice points in a polytope within polynomial
time in the size of the input. The software LattE [LHH+03] implements Barnivok’s algorithm. The software
package Normaliz [BIS] computes lattice points in polytopes, and is very fast in practice; this is the one interfaced

8

to our software. Based on these algorithms, one can enumerate all lattice points in output-sensitive manner,
i.e. in polynomial time in the output size, which of course can be exponential in the input size.

Suppose that, for the predicted support S, the exponent of every monomial in the i-th variable lies in [0, δ],
for i = 1, 2, . . . , n. Let O∗(·) denote asymptotic bounds when ignoring polylogarithmic factors in the arguments.

Proposition 9. [EP02, lem.4.3] Consider a set S of m monomials in n variables. Given n scalar values
p1, p2, . . . , pn, the algorithm of [EP02] evaluates all the monomials of S at these values in O∗(mn + n

√
δ)

arithmetic operations and O(mn) space.

Now, we arrive at the complexity of constructing a µ×m matrix M , with columns indexed by m monomials
and rows indexed by µ values.

Corollary 10. Assume our algorithm builds a rectangular matrix µ × m, µ ≥ m. Then, all µm entries are
computed in O∗(µmn) operations.

Once constructed, the kernel computation costs O(m2.376) arithmetic operations, which follows from the
current record for matrix multiplication. Our bound can be improved if matrix multiplication is improved. On
µ×m rectangular matrices, the kernel computation has complexity O(µm2).

An interesting aspect is that M has the structure of quasi-Vandermonde matrices. In particular, multiplying
M by a vector v on the right-hand side is equivalent to evaluating a (n + 1)-variate polynomial with support
S and coefficient vector v at all points defining the rows of M . If this complexity were quasilinear in m (i.e.
linear when ignoring polylogarithmic factors in m), then the kernel computation of M should have complexity
quasi-quadratic in m, or even faster, when computing only one eigenvector by Lanczos’ method.

4.3 Examples

We conclude this section with some examples so as to illustrate our algorithm.

Example 2 (Folium of Descartes). Let us consider the following curve.

x0 =
3t2

t3 + 1
, x1 =

3t

t3 + 1
.

The algorithm in [EKP10] yields 3 implicit polytope vertices: [1, 1], [0, 3], [3, 0]. This polygon contains 5 lattice
points which yield the potential implicit monomials x31, x0x1, x0x

2
1, x

2
0x1, x

3
0 indexing the columns of matrix M

in this order. To fill the rows of matrix M , we plug in to each monomial the parametric expressions and evaluate
using 5 random integer τ ’s: 19, 17, 10, 6, 16. Then,

M =

1270238787
322828856000

61731
47059600

66854673
322828856000

3518667
322828856000

185193
322828856000

24137569
4394826072

4913
2683044

1419857
4394826072

83521
4394826072

4913
4394826072

27000000
1003003001

9000
1002001

2700000
1003003001

270000
1003003001

27000
1003003001

1259712
10218313

1944
47089

209952
10218313

34992
10218313

5832
10218313

452984832
68769820673

36864
16785409

28311552
68769820673

1769472
68769820673

110592
68769820673

The nullvector is [1,−3, 0, 0, 1]: its 3 nonzero entries correspond to monomials x31, x0x1, x

3
0, i.e. the actual

monomials of the implicit equation. The latter turns out to be x30 − 3x0x1 + x31, which equals the true implicit
equation of the curve.

Example 3 (Bicubic surface). We consider the benchmark challenge of the bicubic surface [GV97]:

x0 = 3t1(t1 − 1)2 + (t2 − 1)3 + 3t2, x1 = 3t2(t2 − 1)2 + t31 + 3t1,

x2 = −3t2(t22 − 5t2 + 5)t31 − 3(t32 + 6t22 − 9t2 + 1)t21 + t1(6t32 + 9t22 − 18t2 + 3)− 3t2(t2 − 1).

The implicit degree in x0, x1 is 18, and 9 in x2. The approach of [EK03] could not handle it because it generates
737129 regular triangulations (by TOPCOM) in a file of 383MB; our method computes the optimal support. The
implicit polytope has vertices [0, 0, 0], [18, 0, 0], [0, 18, 0], [0, 0, 9], and 715 lattice points. The nullvector of matrix
M contains 715 non-zero entries, which correspond precisely to the actual implicit support. It is computed in
47sec.

9

Figure 2: Folium of Descartes.

Hypercone. We illustrate our method on a hypersurface of dimension 4, whose rational representation is:

x0 =
r(1− t2)(1− s2)

(1 + t2)(1 + s2)
, x1 =

2r(1− t2)s

(1 + t2)(1 + s2)
, x2 =

2rt

1 + t2
, x3 = r. (8)

This is an example where the resultant of the system (3) is a multiple of the implicit equation, hence it defines
a variety strictly containing the image of the parametrization. The extraneous factor is the variety defined by
the denominators of polynomials in (8). Adding the polynomial in equation (4) yields the exact variety. In
order to facilitate the computation of the predicted support, we set up an equivalent system:

F0 = x0w − r(1− t2)(1− s2), F1 = x1w − 2r(1− t2)s,

F2 = x2w − 2rt(1 + s2), F3 = x3 − r,
F4 = w − (1 + s2)(1 + t2), F5 = 1− wy,

(9)

where w is a new variable. We then compute the support of the system’s sparse resultant by eliminating
r, s, t, w, projected to the space of x0, x1, x2, x3. The software from [EFKP11] predicts 4 implicit vertices:
[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]. This polytope contains 165 lattice points, all of which correspond to
actual monomials of a polynomial of total degree 8, which is multiple of the true the equation of the hypercone.
This equation equals x20 + x21 + x22 − x23. This is an extreme example showing how our method may produce a
multiple of the true implicit equation.

5 Implementation and experimental results

This section looks at the actual symbolic and numeric computations once the problem has been reduced to a
question in linear algebra. We start with software for the matrix operations, then discuss different ways to
evaluate the matrix entries, how to measure the accuracy of approximate implicitization, and compare with
other approaches. Our algorithms are implemented in Maple and Matlab.

Let us refer to lemma 8 and assume M has corank 1. Solving the linear system

M~p = ~0,

yields the implicit coefficient pi for each predicted monomial xsi . The kernel null(M) is 1-dimensional, hence
some entry pi is set to 1. We form the inner product of the vector of the monomials indexing the columns of M
with ~p, and then take the primitive part of the resulting polynomial to define the implicit equation. Of course,
such exact methods can treat indefinite parameters which may be encountered in parametric expressions.

For larger examples, we trade exactness for speed and apply Singular Value Decomposition (SVD), thus
computing

M~p> = (UΣV >)~p> = ~0> ⇔ Σ~v> = ~0>, where V ~v> = ~p>,

where UU> = V V > = I and Σ is diagonal. A basis of null(M) consists of the last columns of V corresponding
to the zero singular values of M , because V is orthogonal. When corank(M) = 1, v = [0, . . . , 0, 1] and the last
row of V > gives ~p. The same derivation holds if M is rectangular, say µ ×m,µ ≥ m. Then Σ is of the same
dimensions, U is µ× µ, and V is m×m, where its last column is the sought vector.

10

Our algorithm is implemented in Maple 13. For exact kernel computation, we use function LinearSolve()

from package LinearAlgebra, or function Linear() from package SolveTools. Equivalently, we may com-
pute null(M) using the command NullSpace() of LinearAlgebra. SVD is implemented with command
SingularValues().

We have also implemented numerical versions of our algorithm in Matlab. The numerical stability of matrix
M is measured by comparing ratios of singular values of M . We employ the condition number κ(M) = σ1/σm,
as well as ratio σ1/σm−1, where σ1 is the maximum singular value. By comparing these two numbers, we decide
whether the matrix is of numerical corank 1, otherwise we instantiate a new matrix using new values.

All experiments, unless otherwise stated, were performed on a Celeron 1.6 GHz linux machine with 1 GB of
memory. Most curves and surfaces in our experiments are in Table 7, and Table 8 in the Appendix. The tables
show the parametric, the exact implicit and the approximate implicit representation. The last two equations are
primitive and for the latter we omit terms with very small coefficients. Runtimes (sec) for the various approaches
to implicitization of these curves and surfaces are given, respectively, in Table 1, and Table 2, on Maple. In
both tables, we used random integers for exact computation, with functions NullSpace and LinearSolve, and
unitary complexes for numeric computation with SVD.

We also used dense and sparse Bézier curves of various degrees; the runtimes for this family of curves are
shown in Table 4. In this set of experiments we show the size µ × m, µ > m of matrices used in numerical
computation; the corresponding matrices for exact computation are m×m.

A first observation is that SVD and exact linear algebra are competitive on our inputs; we expect that SVD
shall be significantly faster on larger inputs. A second observation is that the approximate methods we applied
gave very satisfactory results with respect to the accuracy of the computed implicit equation. Notice that in
certain cases we use a rectangular µ×m, µ > m matrix so as to improve numerical stability. Overall, our results
are encouraging and indicate that the algorithms in this paper are worth applying to implicitization. However,
as the matrix size grows, our current implementations show their limitations.

Curve Exact SVD #impl.
NullSpace LinearSolve matrix size time accuracy (a) matrix size monom.

Descartes’ Folium 0.024 0.02 5× 5 0.0304 1.44.10−17 10× 5 3
Tricuspoid 0.244 0.052 15× 15 0.544 1.89.10−9 30× 15 8
Talbot’s curve 11.729 0.232 28× 28 3.048 0.0055132 56× 28 8
Nephroid 9.760 0.3 28× 28 4.12 1.145.10−5 56× 28 10
Ranunculoid 8809.43 0.916 91× 91 error no data 182× 91 43

Table 1: Runtimes (sec) and accuracy of approximation for curves.

Surface Exact SVD matrix # implicit
NullSpace LinearSolve time accuracy (a) size monomials

Quartoid 0.044 0.036 0.06 3.54.10−16 16× 16 4
Peano 0.020 0.024 0.03 3.05.10−18 10× 10 4
Swallowtail 0.22 0.14 1.5 1.52.10−15 25× 25 6
Sine 12.2 1.18 14.0 1.03.10−5 125× 125 7
Bohemian dome 9.4 1.2 10.4 1.68.10−5 125× 125 7
Enneper 315 0.75 error no data 106× 106 57

Table 2: Runtimes (sec) and accuracy of approximation for surfaces.

5.1 Point sampling

A central part in our linear system construction is held by the evaluation of matrix M at convenient τ . This
section describes our approaches and experimental results.

We have experimented with both integer and complex values. In the former case, we used random and
mutually prime integers to achieve exactness. The chosen value is discarded if it makes some denominator
vanish among the parametric expressions. We also tried complex values for τ : Given an m×m matrix, we used
2m-th roots of unity, and random unitary complexes, i.e. complex numbers of modulus equal to 1. The roots of
unity when used with approximate methods where evaluated as floats. When examining approximate methods
we used the ratio of the last two singular values σm/σm−1, which indicates how close to having corank 1 is
matrix M .

Table 3 shows representative timings about these options, which we examined with our implementation on
Maple, optimized for the specific task. The experiments were performed on a Intel I3-380UM 1.33GHz linux

11

machine with 4 GB of memory. The specifics in the setup of these experiments account for the differences of
the corresponding timings shown in other tables.

Our experiments show that runtimes do not vary significantly in small examples but in larger ones, the best
results are given by random integers for the exact method, and unitary complexes and roots of unity evaluated
as floats for the numeric method, with the former having a slightly better overall performance over the latter,
both in terms of stability and speed.

As expected, random integers give matrices which are closer to having corank 1. Note that in Table 3,
the Trifolium’s matrix M , when computed using random integers, was of corank > 1 but we were still able to
compute a multiple of its implicit equation using exact methods. Namely, any kernel vector supplied a multiple
of the implicit equation. The degree of the extraneous factor varied depending on the vector chosen.

For the family of Bézier curves, using random integers we obtain better values of the ratio of singular values,
compared to other evaluation methods.

implicit lattice SVD (σm/σm−1) NullSpace

Curve degree points root of 1 unitary C rand.Z rand.Z
Folium of Descartes 3 5 0.136 (10−10) 0.044 (10−6) 0.032 (10−8) 0.032
Conchoid 4 10 0.372 (10−12) 0.128 (10−8) 0.096 (10−2) 0.06
Bean curve 4 13 0.328 (10−6) 0.092 (10−2) 0.06 (10−3) 0.108
Trichoid 4 15 0.5 (10−8) 0.296 (10−3) 0.472 (10−1) 0.116
Cardioid 4 15 0.764 (10−6) 0.364 (10−5) 0.184 (10−1) 0.132
Nephroid 6 28 1.844 (10−5) 1.460 (10−1) 0.144 (10−4) 1.932
Talbot’s curve 6 28 1.596 (10−7) 1.424 (10−5) 0.124 (10−2) 2.128
Trifolium 8 45 1.753 (10−40) 0.712 (10−8) – 13.71,corank>1
Ranunculoid 12 91 59.764 (10−84) 62.424 (10−58) 79.853 (10−2) 8643.816
Dense Bézier deg.8 8 45 1.884 (10−2) 0.848 (10−1) 7.329 (10−225) 18.597
Sparse Bézier deg.8 8 33 1.072 (10−2) 0.404 (10−5) 0.148 (10−145) 2.984

Table 3: Comparison of matrix evaluation methods. Runtimes on Maple (sec), whereas the parenthesis contains
σm/σm−1.

5.2 Accuracy of approximate implicitization

In this section, we evaluate the numeric accuracy, or quality, of the approximate implicit equation obtained by
our method, by comparing it to the exact implicit equation.

When using numerical methods, the computed implicit equation is not a polynomial with rational coefficients,
hence we need to convert the computed real or complex kernel-vector to a rational vector. This is achieved by
setting all coefficients smaller than a certain threshold, defined by the problem’s condition number, equal to
zero. The result is not always equal to the exact implicit equation, so its accuracy is quantified by two measures
discussed later. The overall process is computationally rather costly; it can be avoided whenever an implicit
equation with floating point coefficients is sufficient for a specific application.

We employ two measures to quantify the accuracy of approximate implicitization:

(a) Coefficient difference: measured as the norm of the difference of the two coefficient vectors Vexact, Vapp,
obtained from exact and approximate implicitization, after padding with zero the entries of each vector
which do not appear in the other.

(b) Evaluation norm: measured by considering the maximum norm of the approximate implicit equation when
evaluated at a set of sampled points on the given parametric object. This is of course a lower bound on
how far from zero can such a value be.

We can actually improve the accuracy of approximation if we disregard all real or complex entries of the
coefficient vector with norm close to zero. This simple filtering, applied with a threshold of 10−6, improves
the accuracy under measure (a) by up to one order of magnitude. All results shown in the tables concerning
approximate implicitization make use of this filtering.

The approximate implicit equation in all experiments below is obtained using the command SingularValues(),
where the matrix is instantiated by unitary complex values τ , whereas the exact one is obtained using command
NullSpace() using random integers. We used several parametric curves and surfaces. The computed approxi-
mate implicit equations are given in Table 7, and respectively Table 8. The runtimes of approximate and exact
methods, and the accuracy of approximation using measure (a) above, are shown in Table 1 and Table 2. These
results confirm that SVD can give very good approximations of the actual implicit equation in most inputs,

12

despite the fact that the current implementation has difficulties dealing with large inputs. It is the direction we
are following in the future, combined with further algorithmic improvements such as a smaller support.

One of the main difficulties of approximating the implicit equation is to build the matrix M so that its
numeric corank is 1. Our experiments indicate, expectedly, that if the entries of M take big absolute values,
then computations with M are less stable. We improve stability by avoiding values that make the denominators
of the parametric polynomials evaluate close to 0. These values are singular points so we choose a box containing
each such point and remove them when we pick different values. Moreover, we add more rows to M .

We present some specific examples, using both dense and sparse Bézier curves of varying degree (see exam-
ple 4), yielding dense and sparse implicit equations. These are polynomial parameterizations, where the implicit
equation is of the same total degree. We compare the runtimes for exact and approximate methods, and the
accuracy of the latter using both measures: (a) in Table 4, and (b) in Table 5. Both measures give overall very
encouraging results.

Table 4 also juxtaposes the efficiency of our algorithm on dense and sparse Bézier inputs. It appears that
we are able to exploit sparseness, since the matrix size is smaller in sparse inputs, and not very far from the
actual size of the implicit support. This translates into faster runtimes and better accuracy of the approximate
implicit equation. For the dense curve of degree 8, the accuracy of the approximate polynomial is rather large,
but may be acceptable given the large norm of the coefficient, namely at least 106. Figure A in the Appendix
summarizes the accuracy estimation, using criterion (a), for approximating dense Bézier curves. The figure
shows the hardness of approximation as the parametric and implicit degree grows.

Implicit SVD NullSpace Accuracy (a) Matrix size (SVD) # nonzero terms
degree dense sparse dense sparse dense sparse dense sparse dense sparse

4 0.696 0.244 0.148 0.060 4.874 · 10−12 1.198 · 10−17 30 × 15 22 × 11 15 8

5 1.616 0.584 0.740 0.228 4.184 · 10−7 2.579 · 10−22 42 × 21 32 × 16 21 14

6 3.788 0.464 4.768 0.908 4.843 · 10−5 3.006 · 10−11 56 × 28 38 × 19 28 19

8 19.173 5.704 133.148 17.141 23.717 4.175 · 10−4 90 × 45 66 × 33 45 32

Table 4: Maple runtimes (sec) and accuracy for dense and sparse Bézier curves.

Surface Max norm of approximate implicit polynomial

Bohemian dome 7.21668 · 10−10

Quartoid 7.44845 · 10−16

Sine 1.25549 · 10−5

Swallowtail 1.98798 · 10−10

Table 5: Accuracy of approximation under measure (b) over 150 sampled points

Example 4. We consider a family of dense and sparse Bézier polynomial curves. Their implicit degree equals
the maximum degree of their parametric polynomials. The dense Bézier curve of degree 8 has both parametric
polynomials of maximum degree:

x(t) = 4t−42t2+168t3−385t4+532t5−406t6+140t7−11t8, y(t) = 1/2−28t3+105t4−196t5+210t6−120t7+29t8.

The sparse Bézier curve of degree 8 is missing certain terms, namely one of the parametric polynomials is of
lower degree:

x(t) = 1 + 112t3 − 630t4 + 1344t5 − 1344t6 + 592t7 − 75t8, y(t) = 2− 16t+ 280t3 − 420t4 − 392t5 + 546t6.

Further curves of this family are used in our experiments and are generated in a similar fashion. The correspond-
ing accuracy of approximation and the runtimes are shown in Table 4. Figure A in the Appendix summarizes
the approximation accuracy for the dense family.

5.3 Comparison to other methods

We report on a preliminary comparison of our implementation against methods using µ-bases [CSC98, BB10],
implemented only for curves [BB10], and Maple function Implicitize() based on [CGKW00]. The latter relies
on integration of matrix M over each parameter, see sec. 2.1.

Table 6 summarizes the total time to implicitize a curve, given its parameterization. We used the same
algebraic curves as in other tables, grouped by degree; for each degree, the table shows the average runtime. In

13

our experiments, µ-bases yield the fastest runtimes, whereas Implicitize() is the slowest of the three when
run in exact mode or when the parametrization is rational.

However, µ-bases rely on exact computation over rational numbers, and an approximate computation would
not offer good accuracy. Our algorithm removes this limitation and offers high-quality approximations.

curve Implicitize Implicitize Our µ-bases
degree exact numeric software

3 2.0465 0.031 0.024 0.016
4 5.386 0.056 0.035 0.031
6 24.854 0.117 0.109 0.036
8 905.68 0.249 0.266 0.047
12 >3000 0.7485 1.453 0.125

Table 6: Comparing runtimes (sec) of: Maple function Implicitize (exact and numeric), our method, and
µ-bases.

6 Further work

This paper illustrates the merits of our algorithms, and reveals the issues arising in our procedures, using
medium-size examples. Some points of current work have been mentioned throughout the paper. Below we
focus on certain further ideas for improvement.

In order to tackle large problems we plan to employ state-of-the-art software libraries for matrix operations.
For exact computations, LinBox [DGG+02] implements asymptotically optimal algorithms, and is designed
to work typically for dimM > 100 so as to perform multiple-precision exact computation. It can also be
parameterized with single-precision or non-exact number types to yield faster algorithms. Eigen [GJ+10] focuses
on medium dimensions and in single or multiple precision floating-point computations, and uses modern generic
programming techniques to perform optimizations both in compilation and execution time. For approximate
implicitization, we plan to use LAPACK for further examination of numerical stability. In this respect, we
may consider specific challenges, e.g. [CTY10]. The authors compute the implicit polytope thus reducing
implicitization of a 16-dimensional hypersurface to linear algebra.

We have restricted attention to hypersurfaces, but the algorithms discussed in this paper apply to surfaces
of codimension ≥ 2, such as space curves. In this case, the generalization of the resultant is the Chow form,
and our methods could interpolate this form, thus offering information about the implicit representation of the
surface. We may also extend our approach to interpolating the implicit polynomial in other bases, such as
Bernstein or Lagrange, by predicting the resultant support in these bases.

It is possible to approximate manifolds given by k parametric pieces with a single implicit equation, by
applying SVD on M> = [M1 · · ·Mk]>, where Mi is the matrix constructed by the algorithms of this paper for
the i-th piece, for i = 1, . . . , k. This includes planar curve or surface splines defined by k segments or patches,
respectively. We assume the k parametric representations yield implicit polynomials with (roughly) the same
Newton polytope, which always happens if the parametric representation of each piece uses polynomials with
the same supports. Matrix M is then evaluated over points spanning all k segments or patches.

Acknowledgements I.Z. Emiris, T. Kalinka, and T. Luu Ba are partially supported by Marie-Curie Ini-
tial Training Network “SAGA” (ShApes, Geometry, Algebra), FP7-PEOPLE contract PITN-GA-2008-214584.
C. Konaxis enjoys support from the FP7-REGPOT-2009-1 project “Archimedes Center for Modeling, Analysis
and Computation”.

References

[APJ11] M. Aigner, A. Poteaux, and B. Juttler. Approximate implicitization of space curves. In U. Langer
and P. Paule, editors, Symbolic and Numeric Computation. Springer, Vienna, 2011. To appear.

[BB10] L. Busé and T. Luu Ba. Matrix-based implicit representations of algebraic curves and applications.
Computer Aided Geometric Design, 27(9):681–699, 2010.

[BD10a] O.J.D. Barrowclough and T. Dokken. Approximate implicitization and approximate null spaces.
The 16th Conference of the International Linear Algebra Society (ILAS), Pisa, Italy, 2010.

14

[BD10b] O.J.D. Barrowclough and T. Dokken. Approximate implicitization of triangular Bézier surfaces. In
Proceedings of the 26th Spring Conference on Computer Graphics, SCCG ’10, pages 133–140, New
York, NY, USA, 2010.

[BIS] W. Bruns, B. Ichim, and C. Söger. Normaliz. algorithms for rational cones and affine monoids.
Available from http://www.math.uos.de/normaliz.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpola-
tion. In Proc. ACM Symp. Theory of Computing, pages 301–309. ACM Press, New York, 1988.

[BP99] A. Barvinok and J. Pommersheim. An algorithmic theory of lattice points in polyhedra. Complexity,
38:91147, 1999.

[CD06] M.A. Cueto and A. Dickenstein. Some results on inhomogeneous discriminants, 2006.
arXiv:math/0610031v2 [math.AG].

[CE00] J.F. Canny and I.Z. Emiris. A subdivision-based algorithm for the sparse resultant. J. ACM,
47(3):417–451, May 2000.

[CGKW00] R.M. Corless, M. Giesbrecht, Ilias S. Kotsireas, and S.M. Watt. Numerical implicitization of para-
metric hypersurfaces with linear algebra. In Proc. AISC, pages 174–183, 2000.

[CKL89] J.F. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial equations
faster. In Proc. ACM Intern. Symp. on Symbolic & Algebraic Comput., pages 121–128, 1989.

[CLO98] D.A. Cox, J.B. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of Graduate Texts in
Mathematics. Springer-Verlag, NY, 1998.

[CSC98] D.A. Cox, T.W. Sederberg, and F. Chen. The moving line ideal basis of planar rational curves.
Comput. Aided Geom. Design, 15 (8):803–827, 1998.

[CTY10] M.A. Cueto, E.A. Tobis, and J. Yu. An implicitization challenge for binary factor analysis. J.
Symbolic Computation, 45(12):1296–1315, 2010.

[Cue10] M.A. Cueto. Tropical Implicitization. PhD thesis, Dept Mathematics, UC Berkeley, 2010.

[D’A02] C. D’Andrea. Macaulay-style formulas for the sparse resultant. Trans. of the AMS, 354:2595–2629,
2002.

[DFS07] A. Dickenstein, E.M. Feichtner, and B. Sturmfels. Tropical discriminants. J. AMS, pages 1111–1133,
2007.

[DGG+02] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saunders, W. J.
Turner, and G. Villard. Linbox: A generic library for exact linear algebra. In Proc. 1st Internat.
Congress Math. Software (ICMS), pages 40–50, Beijing, China, 2002.

[DS10] C. D’Andrea and M. Sombra. The Newton polygon of a rational plane curve. Math. in Computer
Science, 4(1):3–24, 2010.

[DT03] T. Dokken and J.B. Thomassen. Overview of approximate implicitization. Topics in algebraic
geometry and geometric modeling, 334:169–184, 2003.

[EFKP11] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Peñaranda. An output-sensitive algorithm for
computing projections of resultant polytopes. arXiv:1108.5985v2 [cs.SC], 2011.

[EK03] I.Z. Emiris and I.S. Kotsireas. Implicit polynomial support optimized for sparseness. In Proc.
Intern. Conf. Computational science appl.: Part III, pages 397–406, Berlin, 2003. Springer.

[EK06] A. Esterov and A. Khovanskǐı. Elimination theory and newton polytopes. arXiv:0611107[math],
2006.

[EKK11] I.Z. Emiris, T. Kalinka, and C. Konaxis. Implicitization of curves and surfaces using predicted
support. In Proc. Inter. Works. Symbolic-Numeric Computation, San Jose, Calif., 2011.

[EKP10] I.Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton polygon of the implicit equation.
Mathematics in Computer Science, Special Issue on Computational Geometry and Computer-Aided
Design, 4(1):25–44, 2010.

[Emi96] I.Z. Emiris. On the complexity of sparse elimination. J. Complexity, 12:134–166, 1996.

15

[EP02] I.Z. Emiris and V.Y. Pan. Symbolic and numeric methods for exploiting structure in constructing
resultant matrices. J. Symbolic Computation, 33:393–413, 2002.

[EP05] I.Z. Emiris and V.Y. Pan. Improved algorithms for computing determinants and resultants. J.
Complexity, Special Issue, 21:43–71, 2005. Special Issue on FOCM-02.

[GJ+10] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[GKZ94] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Discriminants, Resultants and Multidimen-
sional Determinants. Birkhäuser, Boston, 1994.

[GV97] L. Gonzalez-Vega. Implicitization of parametric curves and surfaces by using multidimensional
Newton formulae. J. Symbolic Comput., 23(2-3):137–151, 1997. Parametric algebraic curves and
applications (Albuquerque, NM, 1995).

[Jen10] A.N. Jensen. Gfan, a software system for Gröbner fans and tropical varieties, 2010.
http://www.math.tu-berlin.de/ jensen/software/gfan/gfan.html.

[JY11] A. Jensen and J. Yu. Computing tropical resultants. arXiv:1109.2368v1[math.AG], 2011.

[Kap91] M. M. Kapranov. A characterization of A-discriminantal hypersurfaces in terms of the logarithmic
Gauss map. Mathematische Annalen, 290:277–285, 1991.

[KL89] E. Kaltofen and Y. Lakshman. Improved sparse multivariate polynomial interpolation algorithms.
In P. Gianni, editor, Proc. ACM Intern. Symp. on Symbolic & Algebraic Comput. 1988, volume 358
of Lect. Notes in Comp. Science, pages 467–474. Springer-Verlag, 1989.

[KL03] I.S. Kotsireas and E.S.C. Lau. Implicitization of polynomial curves. In Proc. ASCM, pages 217–226,
Beijing, 2003.

[LHH+03] J.A. De Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer, and R. Yoshida. A user’s guide for
latte v1.1. Software package LattE is available at http://www.math.ucdavis.edu/˜latte/, 2003.

[MM02] A. Marco and J.J. Martinez. Implicitization of rational surfaces by means of polynomial interpola-
tion. CAGD, 19:327–344, 2002.

[Pan94] V.Y. Pan. Simple multivariate polynomial multiplication. J. Symb. Comp., 18:183–186, 1994.

[Ram02] J. Rambau. TOPCOM: Triangulations of point configurations and oriented matroids. In Arjeh M.
Cohen, Xiao-Shan Gao, and Nobuki Takayama, editors, Intern. Conf. Math. Software, pages 330–
340. World Scientific, 2002.

[Sau04] T. Sauer. Lagrange interpolation on subgrids of tensor product grids. Math. of Comput., 73:181–190,
January 2004.

[SJ08] M. Shalaby and B. Jüttler. Approximate implicitization of space curves and of surfaces of revolution.
In R. Piene and B. Jüttler, editors, Algebraic Geometry and Geometric Modeling, pages 215–228.
Springer, 2008.

[Stu94] B. Sturmfels. On the Newton polytope of the resultant. J. Algebraic Combin., 3:207–236, 1994.

[STY07] B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of the implicit equation. Moscow Math.
J., 7(2), 2007.

[SY94] B. Sturmfels and J.T. Yu. Minimal polynomials and sparse resultants. In F. Orecchia and L. Chi-
antini, editors, Proc. Zero-dimensional schemes (Ravello, 1992), pages 317–324. De Gruyter, 1994.

[SY08] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes. In Software for Algebraic
Geometry, volume 148 of IMA Volumes in Math. & its Applic., pages 111–131. Springer, New York,
2008.

[Tan07] S. Tanabe. On Horn-Kapranov uniformisation of the discriminantal loci. Adv. Studies Pure Math.,
46:223–249, 2007.

[vdHS10] J. van der Hoeven and E. Schost. Multi-point evaluation in higher dimensions. Technical Report
00477658, HAL, 2010.

16

[WTJD04] E. Wurm, J.B. Thomassen, B. Juttler, and T. Dokken. Comparative benchmarking of methods
for approximate implicitization. In M. Neamtu and M. Lucian, editors, Geometric Modeling and
Computing, Seattle 2003, pages 537–548. Nashboro Press, 2004.

[Zip90] R. Zippel. Interpolating polynomials from their values. J. Symbolic Computation, 9:375–403, 1990.

[Zip93] R. Zippel. Effective Polynomial Computation. Kluwer Academic Publishers, Boston, 1993.

17

A Appendix

Curve Parametric form Exact implicit polynomial Approximate implicit polynomial

Nephroid −64− 60y2 − 12y4 + y6 −1.81402.10−5x2y − 23.99999x2y2

−(−1 + t2)(1 + 10t2 + t4)

(1 + t2)3
, +48x2 − 24x2y2 + 3x2y4 − 12x4 −11.99999x4 − 59.99999y2

+3x4y2 + x6 −2.17512.10−5y3 − 11.99999y4

32t3

(1 + t2)3
+47.99999x2 + 3x4y2 + y6

+x6 − 63.99999 + 3x2y4

Talbot’s curve x6 + 3y2x4 − x4 + 3y4x2 0.00318649y + 0.0019125x2y3

−(1 + 6t2 + t4)(−1 + t2)

(1 + t2)3
, −20y2x2 + y6 + 8y4 + 16y2 +2.999989x2y4 + 0.00010255x4y

+2.999994x4y2 − 0.004140395x2y
−20.00909x2y2 + 15.9979y2

−2t(1− 2t2 + t4)

(1 + t2)3
+0.0008008y3 + 7.999837y4

+0.00079661x2 + 0.9999945y6 + x6

−1.0001x4 + 0.8906879.10−3y5

Tricuspoid
−t4 − 6t2 + 3

(1 + t2)2
,

8t3

(1 + t2)2
−27 + 18y2 + y4 + 24xy2+ −27 + 17.99999y2 + 0.99999y4

+18x2 + 2x2y2 − 8x3 + x4 +23.99999xy2 + 18x2 + x4

+1.99999x2y2 − 8x3

Ranunculoid −
1− 1092t6 + 423t8 − 54t10

(1 + t2)6
−52521875− 1286250x2 − 1286250y2

+
13t12 − 102t2 + 363t4

(1 + t2)6
, −32025(x2 + y2)2 + 93312x5

8t3(−29 + 108t2 − 78t4 + 44t6 + 3t8)

(1 + t2)6
−933120x3y2 + 466560xy4

−812(x2 + y2)3 − 21(x2 + y2)4

−42(x2 + y2)5 + (x2 + y2)6

Table 7: Parametric, implicit, and approximate implicit representation of curves; for the latter, we do not show
coefficients of absolute value < 10−6.

Quality

2 3 4 5 6 7 8

Degree

Figure 3: Accuracy of implicitization of dense Bézier curves

18

Surface Parametric form Exact implicit polynomial Approximate implicit polynomial

Quartoid t, s,−(t2 + s2)2 z + x4 + 2x2y2 + y4 z + x4 + 2x2y2 + y4

Sine
2t

1 + t2
, −2y2z2 + 4x2y2z2 − 2x2y2 −0.23681.10−5y + 0.20275.10−5x

surface −2x2z2 + z4 + y4 + x4 −0.35873.10−5x2y3 + 0.18891.10−5x2y
2s

1 + s2
, −0.58171.10−5x3y + 0.55752.10−5xy

−0.98381.10−5xy2 + 0.22139.10−5xy3

2s + 2t− 2st2 − 2ts2

1 + s2 + t2 + s2t2
−2x2y2 − 2y2z2 − 2x2z2

−0.59775.10−5x2 + 4x2y2z2 + z4

+0.20153.10−5y2 + 0.2.10−4Ix2z2

+0.2.10−4Ix2y2 + 0.2.10−4Iy2z2

+0.42669.10−5x3 + x4 + y4

Bohemian
1− t2

1 + t2
, 2x2y2 − 2x2z2 − 4y2 1.9999x2y2 + 1.9999y2z2

dome
1 + 2t + t2 − s2 − s2t2 + 2ts2

1 + s2 + t2 + s2t2
, +x4 + z4 + 2y2z2 + y4 +z4 + y4 − 3.9999y2

2s

1 + s2
+x4 − 1.9999x2z2

Swallowtail −15xy2z + 3y4 + y2z3 −4xz4 − 10−4Ix3 + y2z3

surface ts2 + 3s4, − 2ts− 3s3, t −4xz4 + 12x2z2 − 9x3 +10−4Ixz4 + 12x2z2

−8.9999x3 − 15xy2z
+10−4Ix2z2 + 2.9999y4

Enneper’s 352836− 78732x2y2z + 749412z2+

surface t−
t3

3
+ ts2, 101088z3x2y − 303264x2yz2 − 25272x2y2z3

−62127z5 + 75816x2y2z2 + 314928x2yz
−4860x4z3 − 2916x6 + 69984x2y3+

2−
s3

3
+ t2s, 23328y4z2 − 26244y4z + 72576yz5

+997272yz − 669222y2z − 18144y2z5

t2 − s2 +209952y3z − 186624y3z2 + 2592x2z5

−106920x2z3 + 34992x4 + 5832x4z2

+8748x4y2 − 34992x4y − 183708x2y2

−268272z4y − 1122660z2y + 602640z3y
+67068z4y2 − 6912z6y + 653913z2y2

+1728z6y2 − 228420z3y2 + 38880z3y3

−4860z3y4 − 2304z8 − 536544y3

+183708y4 − 34992y5 + 2916y6

−577368z − 5616z6 − 8748x2y4−
−34992x2 + 2916x2z4 + 305451x2z2

+7776z7 − 314928x2z + 256z9

−524151z3 + 916353y2 + 263898z4

+174960x2y − 866052y − 1728x2z6

Table 8: Parametric, implicit, and approximate implicit representation of surfaces; for the latter, we do not
show coefficients of absolute value < 10−6.

19

	Introduction
	Existing interpolation methods
	Exact implicitization
	Approximate implicitization

	Support prediction
	Sparse elimination theory
	The implicit polytope

	Implicitization algorithm
	Building the matrix
	Complexity
	Examples

	Implementation and experimental results
	Point sampling
	Accuracy of approximate implicitization
	Comparison to other methods

	Further work
	Appendix

